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 A Model of the Self-Explanation Effect

 Kurt VanLehn, Randolph M. Jones,
 and Michelene T. H. Chi

 Learning Research and Development Center
 University of Pittsburgh

 Several investigators have taken protocols of students learning sophisticated
 skills, such as physics problem solving and LISP coding, by studying examples
 and solving problems. These investigations uncovered the self-explanation
 effect: Students who explain examples to themselves learn better, make more
 accurate self-assessments of their understanding, and use analogies more
 economically while solving problems. We describe a computer model, Cas-
 cade, that accounts for these findings. Explaining an example causes Cascade
 to acquire both domain knowledge and derivational knowledge. Derivational
 knowledge is used analogically to control search during problem solving.
 Domain knowledge is acquired when the current domain knowledge is
 incomplete and causes an impasse. If the impasse can be resolved by applying
 an overly general rule, then a specialization of the rule becomes a new domain
 rule. Computational experiments indicate that Cascade's learning mechanisms
 are jointly sufficient to reproduce the self-explanation effect, but neither
 alone can reproduce it.

 If you teach college courses, you have probably been visited by students
 who are bright, work hard, and yet get low grades on examinations. They
 want to know what they are doing wrong. If you suggest that they study
 harder, they ask you, "How?" Feeling slightly sheepish, you roll out the
 litany of "good study habits" that your teachers and parents told you: Study
 in a well-lit place that is free from distractions, review the chapter for main
 ideas both before and after reading it, take good notes and review them, etc.
 The students reply, with perhaps some irritation, that they already do that.
 They want to know how to study in such a way that they can extract the
 information from the textbook and homework problems that you, the

 Requests for reprints should be sent to Kurt VanLehn, Learning Research and Development
 Center, University of Pittsburgh, 3939 O'Hara Street, Pittsburgh, PA 15260.
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 2 VANLEHN, JONES, CHI

 teacher, expect them to extract. They know it is possible because their
 friends apparently have no trouble extracting the requisite information.
 They want to know how they can study as effectively as their friends.

 Cognitive science does not yet have a complete answer for these students,
 but it has made steady progress toward understanding effective studying
 processes. Much research has involved subject areas that involve extensive
 problem solving, such as science, mathematics, engineering, and computer
 science. In these task domains, studying worked examples appears to play
 a key role in effective learning. Several studies have shown that students
 attend more to examples than other forms of instruction both in controlled
 experiments (LeFevre & Dixon, 1986) and in natural settings (Anderson,
 Farrell, & Saurers, 1984; Chi, Bassock, Lewis, Reimann, & Glaser, 1989;
 Pirolli & Anderson, 1985; VanLehn, 1986). When students solve problems,
 they often refer to examples (Anderson et al., 1984; Chi et al., 1989; Pirolli
 & Anderson, 1985), but how much they learn from such analogical problem
 solving appears to depend on how well they understand the examples
 (Pirolli & Anderson, 1985), which probably depends on how they studied
 the examples. Some researchers (Pirolli, 1991; Pirolli & Bielaczyc, 1989;
 Reed, Dempster, & Ettinger, 1985; Sweller & Cooper, 1985; Ward &
 Sweller, 1990) compared the learning of students who were given worked
 example problems with the learning of students who were given the same
 problems and had to solve them themselves. It was often found that
 examples were similar to problems in that the same factors predicted
 transfer but were different from problems in that less training time was
 needed to achieve the same level of performance. In several studies
 (Charney, Reder, & Kusbit, 1990; Reed et al., 1985; Ward & Sweller, 1990)
 examples that varied in the amount of explanation accompanying their
 solutions were compared. Less explanation often led to more learning.

 Although experiments comparing instructional materials have shed some
 light on studying processes, several researchers have used a more direct
 paradigm for understanding which studying processes are most effective.
 They compared the behaviors of effective and ineffective learners as they
 studied the same material. The students who learned more appeared to
 study the examples by explaining them to themselves (Chi et al., 1989;
 Fergusson-Hessler & de Jong, 1990; Pirolli & Bielaczyc, 1989). For in-
 stance, when Chi and VanLehn (1991) analyzed the protocols of effective
 and ineffective learners as they studied examples, they found that the good
 learners made more comments about the conditions under which specific
 actions were advisable, the relationships between actions and goals, the
 consequences of actions, and the meanings of mathematical expressions.
 This finding does not completely determine the good learners' studying
 process, but it strongly suggests that they were somehow explaining the
 example to themselves by filling in the details that the example left out and
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 A MODEL OF SELF-EXPLANATION 3

 by highlighting the relationships between general pieces of domain knowl-
 edge and the specific actions taken in solving the example. This process (or
 processes) was named self-explanation by Chi et al. (1989). Bielaczyc and
 Recker (1991) showed that students can be taught how to self-explain and
 that, when they do, they learn more effectively.

 The main goal of the present research was to specify precisely the
 processes of self-explanation and to understand why they enhance learning.
 Protocols from the Chi et al. (1989) study were reanalyzed, and several
 learning processes were uncovered. They were modeled in a machine
 learning system, called Cascade. Cascade is able to simulate all the Chi et al.
 findings, which suggests that it is a fairly complete model of the studying
 processes used by both effective and ineffective learners.

 In order to understand which learning processes were responsible for the
 self-explanation effect, Cascade was run several times with various combi-
 nations of its learning processes turned off. We were surprised to find that
 a learning process that acquires search control knowledge is necessary for
 successful learning by the other processes, which acquire domain rules and
 principles.

 In Cascade, the only difference between effective and ineffective learners
 is their strategies for studying examples. The good learner chooses to
 rederive the example's solution, whereas the poor learner simply accepts the
 solution without trying to check it or regenerate it. As expected, this
 strategy difference causes the effective learner to learn more rules while
 studying the example than the poor learner. However, we were surprised to
 find that it also causes the good learner to learn more rules than the poor
 learner while solving problems even though the problem-solving strategies
 are the same for both good and poor learners. Thus, studying examples
 properly raises the learning rate on subsequent problem solving. This is
 consistent with Pirolli and Anderson's (1985) observation that the way
 students study examples seems to influence how much they learn while
 solving problems.

 A second goal of the present research was to extend current theories of
 cognitive skill acquisition. Most theories of skill acquisition propose two
 classes of learning mechanisms, which we call knowledge acquisition
 methods and knowledge compilation mechanisms. Knowledge acquisition
 methods are responsible for acquiring an initial version of the skill from
 whatever instructional material is available. Knowledge compilation mech-
 anisms are responsible for the slow changes in performance that accompany
 practice. Most theorists (e.g., Anderson, 1983; Holland, Holyoak, Nisbett,
 & Thagard, 1986; Newell, 1990) propose that there are only a few
 knowledge compilation mechanisms, such as chunking, proceduralization,
 and strengthening, and that they are part of the human cognitive architec-
 ture. That is, they are present in all individuals beyond a certain young age
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 4 VANLEHN, JONES, CHI

 and are probably biologically determined. In contrast, knowledge acquisi-
 tion methods, such as studying a text effectively or using examples to help
 guide one's problem solving, are believed to be cognitive skills themselves.
 They are not part of the cognitive architecture. That is, they are learned and
 not innate, although they may be highly automatized if they have been
 practiced enough, so subjects may not be aware of their habits for acquiring
 knowledge. Different training situations evoke different methods, and
 different individuals may use different methods even in the same training
 situation. It is impossible to precisely specify all knowledge acquisition
 methods, because novel training methods may call forth novel knowledge
 acquisition methods and thus add new members to the class. Sometimes it
 is not even possible to distinguish one method from another, because
 variations among the methods as they are adapted to different situations
 make them blend into one another.

 Currently, there are much better theories of knowledge compilation
 mechanisms than of knowledge acquisition methods. For instance, ACT*
 (Anderson, 1983) has two knowledge compilation mechanisms -
 proceduralization and strengthening - that model the power law of practice,
 several kinds of transfer, the decreasing reliance on training materials
 during the second stage, and other practice effects. Soar's (Newell, 1990)
 chunking has also been thoroughly explored. However, ACT* and Soar are
 intended to be models of the human cognitive architecture, so according to
 theory they should contain only knowledge compilation mechanisms.
 Knowledge acquisition methods should be learned. Perhaps because of this
 theoretical position, less attention has been paid to simulating human
 knowledge acquisition methods. On the other hand, because machine
 learning has invented hundreds of knowledge acquisition methods, there is
 no lack of hypotheses about what people could be doing to acquire
 knowledge. The problem is that we know very little about what they
 actually do to acquire knowledge. For instance, we all know that one can
 skim an example or one can study it intensely and try to understand it
 deeply. What difference does that make, and what exactly is involved in
 understanding an example deeply? Would one learn just as much by
 skimming the example on its first presentation and studying it intensely only
 if necessary for solving a problem encountered later? Despite all the
 wonderful methods of machine learning and the well-wrought mechanisms
 of knowledge compilation, little is known about human knowledge acqui-
 sition methods. Advancing the field's understanding of this pedagogically
 crucial area is the problem addressed by the present research.

 Two common criteria for evaluating computational models of skill
 acquisition are computational sufficiency and empirical adequacy. A model
 is computationally sufficient if it can produce the observed changes in
 knowledge using only the kinds of information available to the human
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 A MODEL OF SELF-EXPLANATION 5

 student. Computational sufficiency is harmed if, for instance, the model's
 programmer intervenes in order to guide the model back onto the right path
 when it gets lost. Empirical adequacy is assessed by comparing the model's
 behavior with some kind of human behavior. In this article we compare
 Cascade's behavior with several findings, collectively called the self-
 explanation effect. Because these findings in themselves are not con-
 straining enough to completely determine the knowledge acquisition
 methods students are using, we also report informal analyses of the
 protocols that motivated Cascade's design. Ultimately, we would like to
 simulate the protocols on a line-by-line basis, as was done by Newell and
 Simon (1972), Ohlsson (1990), VanLehn (1991a), and a few others. Such a
 simulation is in progress, and we hope to report the results at a later time.

 In addition to computational sufficiency and empirical adequacy, we
 believe a good model should be supported by competitive argumentation
 (VanLehn, 1990; VanLehn, Brown, & Greeno, 1984). The major hypoth-
 eses that define the model should be made explicit, plausible alternatives to
 each should be articulated, and the alternatives should be shown to be
 empirically inadequate or computationally insufficient. Although this ar-
 ticle does not present a complete competitive argument for Cascade, it does
 explicate the major hypotheses and provide some empirical evidence for
 them.

 In the next section, the self-explanation effect is described. A description
 of the Cascade system follows. The computational experiments that simu-
 late the self-explanation effect are presented next. Thereafter follows a
 long, optional section wherein each of the major hypotheses embedded in
 Cascade is presented and motivated with protocol data. We conclude with
 a discussion of what was discovered by implementing and testing Cascade,
 a comparison of Cascade with two other models of the self-explanation
 effect, and a discussion of Cascade's weaknesses and plans for its develop-
 ment.

 THE SELF-EXPLANATION EFFECT

 The task domain used by Chi et al. (1989) was Newtonian particle
 dynamics, the first topic in a typical first-year college physics course. Figure
 1 shows a typical problem and its solution. Solving such problems generally
 involves finding relevant forces and drawing them on a free-body diagram,
 projecting the forces onto axes, applying Newton's Second Law (F = ma;
 the net force acting on a body equals its mass times its acceleration), and
 solving systems of algebraic equations.

 Although the Chi et al. (1989) study had a complex format, the basic
 activities of the subjects were as follows:
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 6 VANLEHN, JONES, CHI

 Problem: Figure a shows an object of weight W hung by strings. Consider the knot at the
 junction of the three strings to be "the body." The body remains at rest under the action of the

 three forces shown in figure b. Suppose we are given the magnitude of one of these forces. How
 can we find the magnitude of the other forces?

 3 00  450
 Fa

 y

 Fb

 300  "450
 x

 Fc

 Figure b Figure a

 Solution:

 Fa, Fb and Fc are all the forces acting on the body. Since the body is unaccelerated,
 Fa+Fb+Fc=O.

 Choosing the x- and y-axes as shown, we can write this vector equation as three scalar
 equations:

 Fax+Fbx = 0

 Fay+Fby+Fcy = 0
 using eqn 5-2. The third scalar equation for the z-axis is simply

 Faz = Fbz = Fcz = 0.

 That is, the vectors all lie in the x-y plane, so that they have no z-components. From the figure
 we see that

 Fax = -Fa cos 300 = -0.866Fa,

 Fay = Fa sin 300 = 0.500Fa,
 and

 Fbx = Fb cos 450 = 0.707Fb,
 Fby = Fb sin 450 = 0.707Fb.

 Also,
 Fcy = -Fc = -W,

 because the string C merely serves to transmit the force on one end to the junction at its other
 end. Substituting these results into our original equations, we obtain

 -0.866Fa + 0.707Fb = 0
 0.500Fa + 0.707Fb - W = 0

 If we are given the magnitude of any one of these three forces, we can solve these equations for
 the other two. For example, if W=100N, we obtain Fa=73.3N and Fb=89.6N.

 FIGURE 1 A physics example.

 1. Take pretests.
 2. Study each of the first three chapters of the textbook (Halliday &

 Resnick, 1981) until a criterion test on the chapter is passed. This
 phase was intended to give subjects the prerequisite knowledge needed
 for learning classical mechanics.

 3. Study the first part of the textbook's chapter on classical mechanics.
 This part introduced the concepts of force, mass, and gravitational
 acceleration. It gave the history and experimental evidence for
 Newton's laws. It ended with a five-step procedure for solving
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 A MODEL OF SELF-EXPLANATION 7

 mechanics problems. Henceforth, this part of the chapter is called the
 text to distinguish it from the remainder of the chapter, which
 consisted of worked examples and exercise problems.

 4. Take a test on the declarative knowledge of the chapter. For instance,
 one question asked students to state Newton's laws in their own words.
 Students who failed this test were sent back to Step 3 of the study.

 5. Study the textbook's worked examples while talking aloud. Figure 1 is
 an example from the textbook. The protocols collected during this
 phase were transcribed and classified to determine, among other
 things, how many self-explanations were given by each subject.

 6. Solve quantitative problems while talking aloud. Subjects were al-
 lowed to refer to the textbook, and they often did. They referred
 mostly to the examples and not the text. None referred to the chapter's
 five-step procedure, which is consistent with the findings mentioned
 earlier that students prefer worked examples over other forms of
 instruction.

 7. Take posttests.

 On the basis of the scores on quantitative problem solving (Phase 6), Chi et
 al. divided their 8 subjects into two groups. The 4 students with the highest
 scores were called the Good solvers; the others were called Poor solvers.

 Two similar studies have been performed. Pirolli and Bielaczyc (1989)
 used a similar design, with LISP coding as the task domain. Fergusson-
 Hessler and de Jong (1990) had subjects give protocols as they studied a
 manual on applications of principles of electricity and magnetism to the
 Aston mass spectrometer. In both studies, subjects were classified as Good
 and Poor solvers on the basis of their test scores.

 The first main result of the Chi et al. (1989) study was derived by
 classifying each of the subjects' comments during example studying as either
 self-explanations or other kinds of comments (e.g., paraphrases, mathe-
 matical manipulations, and metacomments). Good solvers uttered a signif-
 icantly larger number of self-explanations (15.5 per example) than did the
 Poor solvers (2.7 per example). Pirolli and Bielaczyc (1989) corroborated
 this finding when they found that their Good solvers made significantly
 more domain-related explanations than did their Poor solvers while
 studying examples. Fergusson-Hessler and de Jong (1990) found that in the
 categories most representative of deep processing, Good solvers had more
 than twice as many episodes as the Poor solvers (45% vs. 18%), whereas the
 Poor solvers had almost twice as many episodes of superficial study
 processes as Good solvers (19% vs. 10%). In short, there is evidence from
 all three studies that students who learn more utter more self-explanations
 while studying examples.

 While studying examples, students often say whether they understood
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 8 VANLEHN, JONES, CHI

 what they have just read. Chi et al. (1989) classified such self-monitoring
 statements as either positive (e.g., "Okay, that makes sense") or negative
 (e.g., "Wait. How did they get that?"). They found that the Good solvers
 were more accurate in their self-monitoring statements in that 53% of their
 statements were positive and 46% were negative. The Poor students were
 significantly less accurate, saying 85% of the time that they understood
 when, on the basis of their problem-solving performance, they obviously
 had not. Thus, students who learn more make more accurate self-
 monitoring statements during example studying. Fergusson-Hessler and de
 Jong (1990) made a similar finding. The statement "Everything is clear"
 occurred three times more often in the protocols of Poor solvers than of
 Good solvers.

 When Chi et al. (1989) analyzed protocols from the subjects' quantitative
 problem solving, they found that both Good and Poor solvers referred to
 examples on most problems (7507% for Good solvers; 83% for Poor solvers).
 However, they found that the Good solvers referred to the examples less
 often per problem (2.7 times) and more briefly (reading on average only 1.6
 lines per reference) than did the Poor solvers, who referred to the examples
 more frequently (6.7 times per problem) and tended to start at the beginning
 of the example and read many lines (on average, 13.0 lines per reference).
 Thus, students who learn more refer less frequently and more specifically to
 examples during analogical problem solving.

 To summarize, the Good solvers differed from the Poor solvers in four
 major ways:

 1. Good solvers uttered more self-explanations during example studying.
 2. Their self-monitoring statements during example studying were more

 accurate.

 3. They made fewer references to examples during problem solving.
 4. Their references to examples during problem solving were more

 targeted.

 These four findings constitute the self-explanation effect.

 THE CASCADE MODEL

 Cascade has two basic abilities. It can explain examples and it can solve
 problems. These two processes are discussed separately in the following
 sections.

 Explaining Examples

 An example consists of a problem and a solution. Figure 1 shows an
 example studied by subjects in the experiments. The solution consists of a
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 A MODEL OF SELF-EXPLANATION 9

 list of lines. The lines clearly follow from one another, but the reasoning
 connecting them is not completely specified. For instance, the example says,
 "Fa, Fb and Fc are all the forces acting on the body," but it does not say why
 those are the only forces acting on the body or how they were derived.
 When Cascade is simulating a Good solver, it tries to derive each line. When
 it is simulating a Poor solver, it does not try to derive lines. This is the key
 difference between Good and Poor solvers, according to the Cascade
 model.

 Deriving a line is a two-stage process. The first stage is to match the line
 to equations stored in memory. The example line "Fax = - Fa cos 30"' in
 Figure 1 is represented as follows:

 projection(force(knot,stringA), axis(knot,x,0)) =
 -1 * magnitude(force(knot,stringA)) * apply(cos,30)

 The variables, Fax and Fa, have been replaced by their meanings. Because
 the comments of Good and Poor solvers indicated that both groups of
 subjects figured out the meanings of the variables, Cascade does not model
 this process, because it would be the same for both the Good and Poor
 solver simulations.

 Equations are represented as Prolog rules. The conclusion (to the left of
 the : - symbol) is an equation, and the antecedent (following the : -
 symbol) contains conditions that must hold for the equation to be applica-
 ble. Capitalized symbols are Prolog variables. For instance, the following
 rule matches line "Fax = -Fa cos 30"':

 constraint(projection(V,A) =
 sign(proj(V,A)) * magnitude(V) * trigfn(proj(V,A))) : -

 instance(V,vector),
 instance(A,axis),
 origin(A,O),
 vertex(V,O).

 This rule says that if V is a vector, A is an axis, and the origin of the axis
 is the vertex of the vector, then the projection of V onto A is the magnitude
 of the vector multiplied by a sign and a trigonometric function that depends
 on the geometric relationship between the vector and the axis.

 Matching the line to the equation pairs four quantities from the equation
 with four values from the line (see Table 1). The second stage in the
 derivation is to prove that each of the quantities has the value with which it
 is paired. In the case of Quantities 1 and 3, this is trivial, because they are
 equal. The other two quantity-value assertions are proved by backward
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 10 VANLEHN, JONES, CHI

 TABLE 1

 Quantities (First Line) Paired With Values
 (Second Line) by Matching a Rule to a Line

 1. projection(force(knot,stringA),axis(knot,x,0))
 projection(force(knot,stringA),axis(knot,x,0))

 2. sign(proj(force(knot,string.A),axis(knot,x,0)))
 -1

 3. magnitude(force(knot,string.A))
 magnitude(force(knot,string.A))

 4. trigfn(proj(force(knot,string.A), axis(knot,x,0)))
 apply(cos,30)

 chaining through equations. For instance, to prove the fourth assertion,
 Cascade uses the following conditioned equation:

 constraint(trigfn(proj(V,A)) =
 apply(name(trigfn(proj(V,A))),angle(trigfn(proj(V,A))))) : -

 instance(V,vector),
 instance(A,axis),
 origin(A,O),
 vertex(V,O).

 The sought quantity, trigfn, matches the quantity on the left side of the
 equation. Its value, apply(cos,30), is matched to the right side of the
 equation, which sets up two pairings (see Table 2). Cascade recurses to
 prove each of these quantity-value assertions. The recursion terminates
 when the value of a sought quantity is provided in the problem statement.
 For some reasoning, such as the geometric reasoning required for proving
 the second quantity-value assertion of Table 2, we care only about the
 outcome and not the process, so this kind of reasoning is represented with
 tables and ad hoc Prolog code. This kind of reasoning also "terminates" the
 recursive reasoning.

 As a side effect of deriving a line, Cascade stores the derivation in
 memory for later use during analogical problem solving. For each

 TABLE 2

 Quantities (First Line) Paired With Values
 (Second Line) by Applying a Rule

 1. name(trigfn(proj(force(knot,string..A), axis(knot,x,0))))
 Cos

 2. angle(trigfn(proj(force(knot,string._A),axis(knot,x,0))))
 30
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 A MODEL OF SELF-EXPLANATION 11

 quantity-value assertion it proves, Cascade stores a triple consisting of the
 name of the example, the quantity, and the rule used to derive the quantity's
 value. Storing all the derivational triples is an idealization. Even the best
 students cannot recall every step in their derivation of a line. However, if
 they need to know which rule was used to derive a certain goal in order to
 carry out some kind of analogy, they can probably recover that fact by
 examining the line and perhaps even rederiving it. Thus, the information
 recorded in Cascade's triples is available to Good solvers, albeit sometimes
 not directly from memory. In the Poor solver simulation, lines are not
 derived so no derivational triples are stored.

 If Cascade cannot prove a quantity-value assertion, it first tries to
 backtrack and find another way to derive the line. When Good solvers reach
 an impasse, they often do exactly that, as well as checking to see if they
 made any careless mistakes (slips). Because Cascade does not make slips, it
 checks only for alternative solution paths. If Cascade is missing some
 relevant domain knowledge, then all alternative paths will also fail. It
 returns to the original failure impasse and tries to ferret out the missing
 knowledge. The main method for constructing missing knowledge is to try
 to resolve the impasse by using commonsense physics (e.g., that blocks
 sliding down inclined planes do not jump into the air or fall through the
 plane's surface) or overly general rules (e.g., parts have the same property
 values as the whole, so the pressure in a part of a container is equal to the
 pressure in the whole container). For instance, one subject could not figure
 out how to prove one of the aforementioned quantity-value assertions, that
 the sign of the projection was negative (Pair 2 in Table 1). First the subject
 tried looking for an appropriate explanation in a table of trigonometric
 identities. This failed. She then looked up the value of cos(30) in a table of
 cosines. This also failed. (Notice that the subject tried multiple methods for
 acquiring the missing knowledge, which is just what Cascade does, too.)
 The following exchange then took place:

 S: Hmmm, negative cosine 30, why would they say ahhh, ummm. ... The,
 ohh, okay, maybe it's just because the A component is; the X component of
 force A is negative. So they just. . . . Well okay I'll, I'll try that for a while.
 Let's see if that works, 'cause that makes sense.
 E: What makes sense?

 S: The reason the negative is there is because the X component is in the
 negative direction on the x-axis.

 The subject produced the correct rule for determining projection signs, but
 it is not clear from this protocol how she did so. We believe that she noticed
 that the vector was nearest the negative portion of the x-axis, and applied an
 overly general rule that says that signs are often carried from one property
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 12 VANLEHN, JONES, CHI

 to another during mathematical operations.' Cascade's representation for
 such a rule is as follows:

 constraint(sign(P(X,Y)) = sign(Q(X,Y))) : - true.

 Matching this equation to the sought quantity yields the following substi-
 tutions:

 P = proj
 X = force(knot,stringA)
 Y = axis(knot,x,0)

 The variable Q is still unbound, so Cascade's subgoal is to prove that - 1 is
 the value of the quantity

 proj(force(knot,stringA), axis (knot,x,O))

 In English, the goal is to find a property of the projection whose value is a
 negative sign. Finding that the nearest half-axis is negative in this situation
 achieves the subgoal, achieves the goal, and thus resolves the impasse.

 Whenever an overly general rule resolves an impasse, Cascade creates a
 specialization of it by instantiating the rule then substituting variables for
 problem-specific constants, such as physical objects and numbers. In this
 case, it creates the following rule:

 constraint(sign(proj(force(K,S), axis(K,x,R))) =
 sign(nearest-half_axis(force(K,S), axis(K,x,R)))) :- true.

 The variables K, S, and R have been substituted for knot, stringA, and 0,
 respectively. The new rule says that the sign of the projection of a force
 onto an x-axis is the same as the sign of the half-axis that is nearest that
 force.

 This rule is added to the domain knowledge tentatively. If Cascade later

 'Projection of vectors is reviewed in Chapter 2 of the textbook, so it is possible that this
 subject was recalling this rule rather than constructing it. However, four other subjects also
 had problems with projections onto negative axes, so the textbook's review seems to have been
 ineffective. Moreover, this particular subject had more problems with mathematics than
 others. Given these prior probabilities and the fact that the subject spent several minutes
 looking in vain for this rule before producing it, we believe that the subject was not recalling
 the rule but was actually constructing it. By the way, in the simulation runs discussed later, all
 relevant knowledge that was covered in the textbook was included in the rules given to Cascade
 before it started explaining the examples. Because this rule was included as prior knowledge,
 this particular impasse and learning described here did not occur. When we fit Cascade's
 behavior to individual subjects, the model of this subject will not be given this rule as prior
 knowledge, and Cascade will have to learn it.
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 A MODEL OF SELF-EXPLANATION 13

 succeeds in deriving the line, then the rule is made a permanent part of the
 domain knowledge base; otherwise, it is deleted. This is another idealization.
 Subjects' comments make it clear they do not always recall a newly invented
 rule, and even if they do, they remain suspicious of it until it has been used
 several times (cf. VanLehn, 1991a). In a later version of Cascade, levels of
 belief may be added to rules to represent this growth in confidence in
 self-invented rules.

 This particular method for resolving impasses and learning new rules is
 called explanation-based learning of correctness (VanLehn, Ball, &
 Kowalski, 1990).

 Cascade has a second method for learning new rules by resolving
 impasses. When neither domain knowledge nor overly general rules can
 prove that a certain quantity has a certain value, Cascade gives up and just
 assumes that the example is right in assigning that value to that quantity. It
 also builds a rule that sanctions analogies to this specific assumption. For
 instance, a line in the example of Figure 1 reads, "Consider the knot at the
 junction of the three strings to be 'the body.' " Upon reading this, one
 subject said, "Why this should be the body? I thought W was the body. OK,
 let's see later." None of the 8 subjects was able to explain why the knot was
 chosen as a body. Indeed, we do not think that there is a proper explanation
 for this choice, even with overly general rules. Experts probably have many
 highly specific rules that tell them the right choices for common problems.
 For unfamiliar problems, experts make a tentative choice, plan a solution,
 and change their choice if a solution cannot be planned (Larkin, 1983).
 Probably the best that a learner can do in the knot situation is to form a rule
 that says, "In problems like this one, choose the knot as the body." This
 appears to be what the subjects did, because when they later tried to solve
 problems that also had three strings converging on a knot, they all referred
 back to the three-strings example and then chose the knot as the body.

 Cascade simulates this behavior with a type of abduction (Pople, 1973)
 that produces rules that cause analogies. Normal abduction produces "P(a)"
 when given "Q(a)" and "P(a) implies Q(a)." That is, if assuming P(a)
 explains why Q(a) holds, then we assume P(a). Cascade's abduction is
 similar, except it produces a generalization of "P(a)" in the form of a rule
 which says, "if X is analogous to a, then P(X)." For instance, when Cascade
 cannot prove that the only body of problem sx is knot-sx (i.e., that bodies
 (sx) = [knot-sx]), it builds the following rule:

 constraint(bodies(Problem) = V):-
 currentsituation(CurrentSit),
 analogicalretrieval(CurrentSit,situationLsx),
 analogical mapping(CurrentSit,situationLsx,Map),
 apply_map(Problem,sx,Map),
 apply_map(V, [knot-sx],Map).
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 This rule says that if an analogy can be built between the current situation
 and situationsx, and the current problem is analogous to sx, then the
 current problem's bodies are analogous to [knotusx]. This rule can be used
 to find bodies for other problems by finding objects corresponding to
 knotusx. This method of learning new rules at impasses is called analogy
 abduction, because it abduces analogy-producing rules.

 Analogy abduction and explanation-based learning of correctness are just
 two of the many methods that subjects use to resolve impasses and acquire
 new rules. In a case discussed earlier, a subject looked up information in
 trigonometric tables. Had she succeeded, she probably would have built a
 new rule. In another case, a subject tested his memory of an algebraic
 operation by generating a test problem and solving it. Cascade currently has
 just two knowledge acquisition methods because these two seem to be the
 most popular in this particular instructional situation.

 To summarize, two major kinds of learning occur when Cascade derives
 example lines: (a) The derivation itself is stored in the form of triples that
 pair sought quantities with the rules used to derive their values. (b) New
 rules are created when an impasse is resolved via explanation-based learning
 of correctness, analogy abduction, or other yet-to-be modeled methods.

 Solving Problems

 Overall, problem solving is similar to example explaining. Explanation-
 based learning of correctness can occur during both, and derivations are
 recorded in memory for both. A minor difference is that analogy abduction
 applies only during example solving. It is based on assuming that a specified
 quantity has a specified value, but the value part of the pair is only available
 during example explaining and not during problem solving.

 Solving a problem is most similar to the second stage in deriving an
 example line. In that stage, the goal is to prove quantity-value assertions,
 and this is done by backward chaining through equations. In problem
 solving, the goal is to find a value for a quantity, and this is also done by
 backward chaining through equations. For instance, if the goal is to find the
 value of

 projection(force(knot2,string_1),axis(knot2,x,O)),

 then Cascade can use the same equation as before:

 constraint(projection(V,A) =
 sign(proj(V,A)) * magnitude(V) * trigfn(proj(V,A))) :-

 instance(V,vector),
 instance(A,axis),
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 A MODEL OF SELF-EXPLANATION 15

 origin(A,O),
 vertex(V,O).

 It matches the left side of the equation to the sought quantity and sets the
 quantities on the right side as subgoals. When it has found values for each
 of the subgoals, it multiplies them together and returns the result as the
 value of the projection.

 Usually there are several rules whose equations match the currently
 sought quantity. Cascade must choose one. This is a search control
 decision; if Cascade's choice fails to yield a solution to the problem, it can
 back up and try a different rule. Nonetheless, it should try the rule most
 likely to succeed first. Cascade's main heuristic for making such choices is
 to select the rule that was used to find a similar quantity in an analogous
 example. To implement this heuristic, Cascade first retrieves an example
 whose diagram is similar to the current problem's diagram. (This type of
 analogical retrieval is somewhat idiosyncratic to the materials used in the
 Chi et al. (1989) study, so Cascade models it with a table look-up rather
 than an actual visual indexing process.) It then forms an analogical
 mapping that pairs objects in the problem with objects in the example.
 Using this mapping, it converts its sought quantity, say,

 projection(force(knot2,string_1),axis(knot2,x,0)),

 into a quantity that uses the example's objects, say,

 projection(force(knot,stringA),axis(knot,x,O)).

 Cascade looks this quantity up in the triples that encode the example's
 derivations and determines what rule was used to find this quantity's value.
 This is the rule that it will try first to achieve the problem's goal. This
 process is called analogical search control.

 Usually, there are many times in the course of solving a problem when
 multiple rules match the sought quantity and choices must be made.
 Cascade does analogical retrieval and mapping only for the first one. It
 stores the map and reuses it for all the others. This is consistent with
 subjects' behavior. If they have not committed the example to memory,
 then they flip through textbook pages until they find the right example and
 reread it to refresh their memory for its derivation. This usually occurs only
 on the first analogical reference during an attempt to solve a problem and
 not during other analogical references during the solving of that problem.
 Even if they have committed the example to memory, when they start a new
 problem they seem to spend a little bit longer on their first analogical
 reference to the example than they do on the others. Perhaps they are
 forming a mapping, just as Cascade does on its first encounter with a new
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 16 VANLEHN, JONES, CHI

 example-problem pair. As mentioned earlier, the current version of Cas-
 cade is an idealization, in that it assumes that the example and its complete
 derivation are always held in memory.

 As Chi et al. (1989) noted, the analogical references of the Poor solvers
 were qualitatively different from those of the Good solvers. The Poor
 solvers often started at the beginning of an example and read the whole
 thing, whereas the Good solvers started in the middle and read only a line
 or two. The latter behavior is consistent with analogical search control,
 because most of its references occur after the initial mapping is made, so the
 major purpose in rereading the example is to refresh one's memory of a
 specific line whose derivation is likely to contain the sought quantity.
 However, analogical search control is not consistent with constantly
 rereading the solutions from top to bottom, so the Poor solvers' behavior
 seems to have been a different kind of analogy. Their comments made it
 clear that they were hunting for a line that contained a quantity similar to
 the currently sought quantity. They did not seem to care how the line was
 derived. For instance, as long as it contained a tension and they were
 seeking a tension, then they were happy to use it just as if it were a valid
 equation from the domain. We implemented this kind of analogy in
 Cascade and named it transformational analogy, after a type of analogy
 studied by Carbonell (1983, 1986) that also ignores derivations. Cascade
 uses transformational analogy whenever an impasse cannot be resolved by
 explanation-based learning of correctness.

 In principle, we could have transformational analogy learn new (prob-
 ably incorrect) rules, just as Carbonell did. However, the subjects often
 commented that they hated hunting randomly for equations, so we doubt
 that they would believe that they had discovered a new rule of physics even
 if they did resolve an impasse using transformational analogy. Thus,
 Cascade does not create new rules when it uses transformational analogy.

 Summary

 Table 3 presents the main loop of the Cascade interpreter. On the first pass,
 Cascade uses only domain knowledge and not the overly general rules of
 explanation-based learning of correctness. If it fails to find a solution path,
 it makes a second pass using the overly general rules as well as the domain
 rules. If this fails, then a third pass is made and impasses are settled by
 analogy abduction. The "create" statements (e.g., Step ig) indicate storage
 of new information in long-term memory. All such additions to the
 knowledge base are undone if backtracking goes through them. Thus, only
 the information created along the solution path survives.

 The current version of Cascade does not adequately model the difference
 between retrieving information from memory and retrieving it from the
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 TABLE 3

 The Main Loop of Cascade's Rule Interpreter

 In problem P, to find a value V for quantity G or to show that V is the value of quantity
 G, try these methods in order until one succeeds:

 1. Analogical search control.
 Do the following five steps in order, failing if any one fails and the failure can't be
 handled:

 a. Retrieve an example E that is similar to P.
 If retrieval fails, then
 flip pages looking for an example with a diagram that is similar to P's diagram.

 b. Retrieve a mapping between E and P.
 If retrieval fails, then

 reread problem statements of E and P, and
 create a mapping.

 c. Using the mapping, substitute terms in G to form a target goal T.
 d. Retrieve a triple (E T R), where R is bound by retrieval to a rule.

 If retrieval fails, then
 reread lines of E's solution to stimulate recall.
 If rereading lines stimulates only partial recall, then

 redo the derivation of the line that stimulated partial recall, and
 retrieve a triple from the new derivation.

 If rereading lines fails to stimulate recall, then
 redo the whole derivation, and
 retrieve a triple from the new derivation.

 e. Show that R's conditions are met.

 f. Apply R's equation to G and V.
 g. Create a triple (P G R).
 h. Return whatever Step f returned.

 2. Regular rule selection and application.
 Do the following steps in order, failing if any one fails and the failure cannot be
 handled:

 a. Retrieve a domain rule (or any rule if this is not pass 1)
 whose equation contains a quantity unifying with G and
 whose condition is met by the current situation. Call the rule R.

 b. Plant a backup point so that a different rule can be
 retrieved if R leads to failure.

 c. Apply R to G and V.
 d. If R is an overly general rule, then

 create a specific version of the rule by instantiating R
 and substituting variables for problem-specific constants.

 Call this new rule R and

 mark it as a domain rule of P's task domain.

 e. Create a triple (P G R).
 f. Return whatever Step c returned.

 (continued)

 17
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 18 VANLEHN, JONES, CHI

 TABLE 3 (Continued)

 3. Transformational analogy.
 If a problem is being solved, then
 do the following steps in order, failing if any one fails and the failure cannot be
 handled:

 a. Retrieve an example (as in Step la).
 b. Retrieve a map (as in Step ib).
 c. Create a target goal T via mapping G (as in Step Ic).
 d. Retrieve a line of the example that contains T.

 If retrieval fails, then reread each line to see if it contains T.
 e. Substitute terms in the line via the map to put it in terms of P.
 f. Apply the line's equation to G.
 g. Return whatever Step f returned.

 4. Analogy abduction.
 If this is the third pass, and
 an example is being explained and a value V for G is known, then
 do the following steps in order, failing if any one fails and the failure cannot be
 handled:

 a. Create an analogy rule R (see text), and
 b. Mark it as a domain rule of P's task domain, and
 c. Create a triple (P G R).
 d. Return success.

 5. Impasse: No rules apply to G.
 If there are backup points, then resume one,
 else if this is Pass 1, then start over with Pass 2,
 else if this is Pass 2 and an example is being explained, then start over with Pass 3,
 else fail utterly. This problem/example cannot be solved/explained.

 To apply an equation E to a quantity G when the value is unknown:
 1. Let S be all quantities in E except G.
 2. Recurse to find the values of each quantity in S.
 3. Substitute values for quantities in E.
 4. Solve E for G.

 5. Return the result as G's value.

 To apply an equation E to a quantity G when the value V is given:
 1. Solve E for G, obtaining expression X.
 2. Match X to V, obtaining a set S of quantity-value pairs.
 3. Recurse to show that each quantity in S has the value with which it is paired.
 4. Return success.

 external world (e.g., the worksheet with the problem written on it). It is not
 difficult to add such a distinction, and Table 3 shows the main loop as if the
 distinction were already embedded in Cascade. The added code, shown in
 italics, specifies strategies for retrieving information from the external
 world whenever a memory retrieval fails. For instance, Step la claims that
 subjects attempt to retrieve an analogous example from memory and, if that
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 fails, to flip through pages of the textbook looking for an example whose
 diagram matches the problem's diagram. At this point in Cascade's
 development, we do not want to defend any particular memory model. One
 has been included here in order to clarify the relationship between Cascade's
 activities and the subjects' activities.

 MODELING THE SELF-EXPLANATION EFFECT
 WITH CASCADE

 A simple hypothesis for explaining the difference between Good and Poor
 solvers is that Good solvers chose to explain more example lines than did
 Poor solvers. This in turn caused more learning and hence better perfor-
 mance and all the other differences between the Good and Poor solvers.

 This hypothesis is nearly vacuous unless one specifies exactly how ex-
 plaining examples causes learning. Cascade is such a specification. In this
 section we report a test of the conjoined hypotheses (a) that Cascade models
 learning in the Chi et al. (1989) study and (b) that the root cause of the
 self-explanation effect is that Good solvers explained more example lines
 than did Poor solvers.

 Several simulation runs were made, varying the number of example lines
 explained and turning on and off various learning mechanisms. All these
 simulations began with the same initial knowledge state. Before the runs are
 described, the initial knowledge state is described along with the method
 used to determine it.

 Initial Knowledge

 Cascade represents knowledge in many ways. Much of the knowledge is
 provided initially rather than learned. The algebraic knowledge that is built
 into the interpreter is, of course, provided initially. Commonsense knowl-
 edge about classes of objects is provided initially as Prolog code. Initial
 knowledge of physics was encoded as 29 rules (conditioned equations) that
 were derived as follows. First, an extensive task analysis and simulation
 were conducted with the aid of Bernadette Kowalski and William Ball.

 Starting with the task analyses of Bundy, Byrd, Luger, Mellish, and Palmer
 (1979), Larkin (1981, 1983), and Novak and Araya (1980), a set of rules and
 a representation of physics problems were developed that were simple and
 yet sufficient for solving all but 2 of the 25 problems in the Chi et al. (1989)
 study (solving the 2 problems would have required a type of mathematical
 reasoning that we did not bother to implement). During this time, extensive
 informal analyses of the Chi et al. protocols were conducted in an effort to
 align the proposed knowledge representations with the subjects' comments.
 The resulting target knowledge base contained 62 physics rules. Next, two
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 people who were not involved in developing the target knowledge base were
 asked to judge each rule and determine whether it was mentioned anywhere
 in the text (i.e., the textbook before the examples). There was 95%0
 agreement between the judges. Disagreements were settled by a third judge.
 Of the 62 rules in the target knowledge base, only 29 (47%) were judged to
 be present in the text. These rules were given to Cascade as its initial
 knowledge of physics for the runs that simulated the self-explanation effect.

 The remaining Cascade knowledge consists of 44 rules used by explanation-
 based learning of correctness (EBLC). There are three kinds, which will be
 described in turn (see Table 4).

 Eleven rules are overgeneralizations of common patterns of scientific
 inference. For instance, Rule 1 says that the property of a whole often has
 the same value as the property of a part. Cascade used this rule to learn a
 new domain rule that says that the pressure in a whole container is equal to
 the pressure in one of its parts.

 There are 28 rules that encode knowledge about commonsense physics
 (not shown in Table 4). Most of these rules describe commonsense forces
 (i.e., pushes and pulls). Some of these rules, for instance, state that a
 compressed spring pushes and a stretched spring pulls.

 There are six overly general rules that link commonsense physics to proper
 physics. EBLC uses these rules to relabel commonsense quantities as proper
 physics quantities. Because only a specialized version of the relabeling rule
 is kept, Cascade converts commonsense quantities to formal physics quan-
 tities one at a time. It does not learn the sweeping (and incorrect) general-
 ization that all commonsense quantities are also formal physics quantities.
 In the process of relabeling commonsense concepts, EBLC also gives them
 a more mathematical formulation. For instance, when a commonsense force
 is turned into a formal physics force, EBLC gives it explicit vectorial prop-
 erties, namely, magnitude and direction. This approach to learning scientific
 concepts seems plausible, considering that many scientific concepts, such as
 force or acceleration, are modifications of lay concepts.2

 2There is a whole literature on the development of scientific concepts (for a recent
 discussion, see Chi, in press). Some theorists (e.g., Carey, 1985) believe that acquisition of
 scientific concepts like force require a complete restructuring of the subject's belief systems,
 similar to the Kuhnian paradigm shifts that supposedly accompanied the historical develop-
 ment of such concepts. Other theorists (e.g., di Sessa, 1988) believe that acquisition of
 scientific concepts results from gradual modification of naive concepts. Cascade shows that the
 gradual-acquisition account is computationally sufficient, at least for physics concepts such as
 force and acceleration, provided that the learner has already distinguished between formal and
 naive physics and has erected an equation-based representation for formal physics. According
 to Chi, seeing forces, accelerations, etc. as formal quantities rather than substances possessed
 by objects is the crucial step that lays the foundation on which gradual acquisition
 mechanisms, such as Cascade's, can build.
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 TABLE 4

 Rules Used by Explanation-based Learning of Correctness

 Overly general rules about properties and values
 1. If P is a part of W, then the value of a property for W is the value of that property

 for P.

 2. If P is a part of W, then the value of a property for P is the value of that property
 for W.

 3. If P1 and P2 are parts of W, then the value of a property for W is the value of a
 property for P1 and P2.

 4. If P1 and P2 are parts of W, then the value of a property for P1 and P2 is the value
 of a property for W.

 5. If P is a part of W, then the value of a property for W is the perpendicular to the
 value of that property for P.

 6. If P is a part of W, then the value of a property for W is the opposite of the value
 of that property for P.

 7. If a structural predicate relates object A to object B, then there is a force from B on
 A.

 8. If a structural predicate relates object B to object A, then there is a force from B on
 A.

 9. If the value for a property P1 of object X is equal to the value for that property of

 object Y, and property P2 can be derived from P1l, then the value for P2 of object
 X is equal to the value for that property of object Y.

 10. If the value for a property P1 of object X is equal to the value for that property of
 object Y, and property P2 is derivable from P1, then the value for P2 of object Y is
 equal to the value for that property of object X.

 11. A property P of an object is the magnitude of a force of type P from the object on
 a body.

 Overly general rules that link common sense with physics
 39. If F is a commonsense force, then it is a physics force.
 40. If a commonsense force F has a property P, then the analogous physics force has the

 same property.
 41. If A is a commonsense acceleration, then it is a physics acceleration.
 42. If a commonsense acceleration A has a property P, then the analogous physics

 acceleration has the same property.
 43. If X is a set of commonsense axes, then it is a set of physics axes.
 44. If F is a force from S on B, then the sense of the force depends on whether it

 "pushes" or "pulls" on B.

 The Simulation Runs

 Run 1 was intended to simulate a very good student who explains every line
 of every example. Cascade first explained the three examples in the study,
 then it solved the 23 problems (the 2 problems that are not solvable by the
 target knowledge were excluded). It was able to correctly solve all the
 problems. It acquired 23 rules: 8 while explaining examples and 15 while
 solving problems. Table 5 lists the rules acquired. The number of times each
 was used appears in square brackets. All these rules were acquired by EBLC
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 TABLE 5

 Rules Learned by Cascade During Run 1

 1. If X slides on Y, then there is a normal force from Y on X. [9]
 2. If there is a normal force from Y on X, then the sense of the force is the relative

 position of X with respect to Y. [9]
 3. If there is a normal force from Y on X, then the incline of the force is perpendicular

 to the incline of Y. [9]
 4. The axes can be chosen from any two perpendicular vectors in the free-body diagram.

 [2]
 5. If X slides down Y, then the sense of the acceleration of X is down. [9]
 6. If X slides down Y, then the incline of the acceleration of X is the incline of Y. [5]
 7. If the magnitude of the displacement of X is equal to the magnitude of the

 displacement of Y, then the magnitude of the acceleration of X is equal to the
 magnitude of the acceleration of Y. [6]

 8. If X floats in Y, then there is a buoyant force on X due to Y. [1]
 9. If there is a buoyant force on X due to Y, then the incline of the force is 900. [1]

 10. If there is a buoyant force on X due to Y, then the sense of the force is up.
 11. The "tension of X" means the magnitude of the tension force on something due to X.

 [1]
 12. If Y is a pusher and tied to X, then there is a compression force on X due to Y. [1]
 13. If there is a compression force on X due to Y, then the incline of the force is the

 incline of Y. [1]
 14. If there is a compression force on X due to Y, then the sense of the force is the

 relative position of X with respect to Y. [1]
 15. If X is an object and Y supports X, then there is a pressure force on X due to Y. [1]
 16. If there is a pressure force on X due to Y, then the incline of the force is the incline of

 Y. [1]
 17. If there is a pressure force on X due to Y, then the sense of the force is the relative

 position of X with respect to Y. [1]
 18. If Y is a piece of X, then the pressure of X is equal to the pressure of Y. [1]
 19. The "pressure of X" means the magnitude of the pressure force on something due to

 X. [1]
 20. If an object X moves through the air Y, then there is a friction force on X due to Y.

 [1]
 21. If there is a friction force on X due to Y, then the incline of the force is the incline of

 the velocity of X. [2]
 22. If there is a friction force on X due to Y, then the sense of the force is opposite to the

 sense of the velocity of X. [2]
 23. If the current situation is analogous to situationsx, and the current problem is

 analogous to sx, then the bodies of the current problem are analogous to [knotsx].
 [3]

 except Rule 23, which was acquired by analogy abduction. The new rules
 are correct physics knowledge, allowing for the simplicity of the knowledge
 representation. Moreover, they seem to have the right degree of generality
 in that none were applied incorrectly and none were inapplicable when they
 should have been. However, some of the rules dealt with situations that
 occurred only once in this problem set, so they were never used after their
 acquisition.
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 Run 2 was intended to simulate a very poor student who explains none of
 the example lines. To simulate a student who merely reads an example
 without explaining it, the lines from the three examples were made available
 for transformational analogy but were not explained. Thus, there was no
 opportunity for EBLC and analogy abduction to learn new rules and there
 were no derivations left behind to act as search control for later problem
 solving. Cascade was given the same 23 problems it was given in Run 1. It
 correctly solved 9 problems. As it solved these problems, it acquired 3
 correct rules via EBLC. On 6 problems, Cascade found an incorrect
 solution, during which time no rules were acquired. On the remaining 8
 problems, either Cascade failed to find a solution or its search went on for
 so long that it was cut off after 20 min. Although EBLC was used
 extensively, the rules produced were always incorrect. On the assumption
 that a poor student would not believe a rule unless it led to a correct
 solution, rules acquired during failed solution attempts were deleted.

 Run 3 was intended to separate the benefits of EBLC from the benefits of
 analogy. Cascade studied the examples as in Run 1, learning the same 8
 rules as in Run 1. During problem solving, both analogical search control
 and transformational analogy were disabled. As expected, it answered only
 19 of 23 problems correctly. A large interaction was found with EBLC.
 When analogy was not used during problem solving, EBLC learned 10
 rules, only 6 of which were correct. Moreover, 3 of the 6 rules were the same
 3 that it had learned on Run 2. Thus, of the 15 rules learned during problem
 solving on Run 1, 3 could be learned without benefit of the rules learned
 during example studying, 3 others required the example studying rules but
 could be learned without analogy, and the remaining 9 required both
 analogy and the example-studying rules. This finding makes sense. Analog-
 ical search control and, to a less extent, transformational analogy influence
 the exact location of impasses, which in turn determine the rules learned by
 EBLC. Their influence is strong enough that analogy is necessary for EBLC
 to learn 9 of the 15 rules (60%) acquired during Run l's problem solving.

 In order to determine whether this effect was due to transformational

 analogy or analogical search control, a fourth run was conducted that was
 similar to Run 3 except that only analogical search control was disabled.
 Cascade still used transformational analogy. This allowed it to get 2 more
 problems correct, raising its score to 21 of 23 problems. More important,
 EBLC acquired the same six correct rules as in Run 3. The fact that no further
 correct rules were acquired implies that it was analogical search control and
 not transformational analogy that helped EBLC during Run 1. Thus, it
 appears that analogical search control (or some other kind of search control)
 is necessary during problem solving if EBLC is to learn successfully.

 Table 6 summarizes the results of the four runs. The processes turned on
 during each run are listed beside the run's name.
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 TABLE 6

 Results of the Simulation Run

 Run 1: Self-explanation, analogical search control, transformational analogy
 8 Rules learned during example studying
 15 Rules learned during problem solving

 23 Total rules learned

 23 Problems solved correctly
 Run 2: Analogical search control, transformational analogy

 0 Rules learned during example studying
 3 Rules learned during problem solving (all correct)

 3 Total rules learned

 9 Problems solved correctly
 Run 3: Self-explanation

 8 Rules learned during example studying (same rules as Run 1)
 10 Rules learned during problem solving

 3 Same as rules learned during Run 2
 3 Other correct rules

 4 Incorrect rules

 18 Total rules learned

 19 Problems solved correctly
 Run 4: Self-explanation, transformational analogy

 8 Rules learned during example studying (same rules as Run 1)
 9 Rules learned during problem solving

 6 Same as correct rules learned during Run 3
 3 Incorrect rules

 17 Total rules learned

 21 Problems solved correctly

 Explaining the Self-Explanation Findings

 Cascade was expected to be able to explain the four differences between
 Good and Poor solvers observed by Chi et al. (1989). Assuming that the
 number of self-explanatory utterances was directly proportional to the
 number of lines explained during example studying, the job facing Cascade
 was to demonstrate that explaining more lines caused better scores on
 problem solving (Finding 1), more accurate self-monitoring (Finding 2), less
 frequent reference to the examples (Finding 3), and more specific reference
 to the examples (Finding 4).

 The contrast between Runs 1 and 2 indicates that Cascade was able to

 reproduce the positive correlation between the number of example lines
 explained and the number of problems solved correctly. On Run 1, it
 explained all the example lines and got all 23 problems correct; on Run 2,
 it explained none of the example lines and got 9 of the problems correct.
 Knowing the operation of Cascade, it is clear that having it explain an
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 intermediate number of lines would cause it to correctly answer an
 intermediate number of problems. So the two extreme points (Runs 1 and
 2) plus Cascade's deterministic design are sufficient to demonstrate the main
 correlation of the self-explanation effect.

 Several mechanisms contributed to this result, and each is examined in
 turn. First, when more lines are explained, Cascade is more likely to
 stumble across a gap in its domain knowledge. Such missing knowledge
 causes impasses, which causes EBLC and analogy abduction to construct
 new rules during example explaining. Of the 20 rules that were learned
 during Run 1 and not Run 2, 8 (40%) were learned while explaining
 examples. As the domain knowledge becomes more complete, performance
 on problem solving rises. Thus, the more self-explanation, the more rules
 learned during example studying, and hence the more improvement in
 problem solving.

 The acquisition of rules during example studying helps produce contexts
 that allow EBLC to learn more rules during problem solving even without
 the aid of analogical search control. For instance, one rule learned during
 example studying selects a body for resolving forces about. This rule is
 necessary for traversing the correct solution path for some problems, which
 in turn is necessary for acquiring certain rules. Learning this rule during
 example studying allows EBLC to learn new rules during problem solving,
 and some of these new rules can be learned even without the guidance of
 analogical search control. Of the 20 rules, Run 3 shows that 3 (15%) were
 acquired in this fashion. These new rules also contributed to the improve-
 ment in problem solving.

 Analogical search control raises the test scores both directly and indi-
 rectly. When more lines are explained, more derivational triples are stored
 and available for analogical search control. Because analogical search
 control prevents Cascade from going down some dead ends, it directly
 raises the score during problem solving. There is an indirect effect as well.
 Analogical search control causes impasses to occur at places where knowl-
 edge is truly missing, rather than at local dead ends in the search space, so
 EBLC is more often applied to appropriate impasses and thus more often
 generates correct domain rules. The remaining 9 of the 20 rules (45%)
 require analogical search control for their acquisition.

 There is a simple explanation for the finding that Good solvers made
 more accurate self-monitoring statements. We assume that negative self-
 monitoring statements (e.g., "I don't understand that") correspond to
 impasses and positive self-monitoring statements (e.g., "Ok, got that")
 occur with some probability during any nonimpasse situation. When more
 example lines are explained, there are more impasses, and hence the
 proportion of negative self-monitoring statements will be higher. In the
 extreme case of Run 2, in which no example lines were explained, all the
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 self-monitoring statements during example processing would be positive,
 which is not far off from Chi et al.'s (1989) observation that 85% of the
 Poor solver's self-monitoring statements were positive.

 Chi et al. (1989) observed that during problem solving, the Good solvers
 made fewer references to the examples than did the Poor solvers (2.7 vs. 6.7
 references per problem). These were mostly physical references, wherein the
 solver turned to the example and reread part of it. Currently, Cascade does
 not distinguish memory references from physical references. However, it
 does have two different kinds of analogical references. Analogical search
 control searches for a sought quantity in the derivation of a problem.
 Transformational analogy reads consecutive lines in an example, looking
 for one that contains the sought quantity. Suppose we assume that all of the
 transformational analogy references are physical and that a small propor-
 tion, say P, of the references due to analogical search control are physical.
 On the Good solver run, Cascade made 551 references for analogical search
 control and 40 for transformational analogy. Using the preceding assump-
 tion, Cascade would make 551P + 40 physical references. On the Poor
 solver run, Cascade could not use analogical search control because no
 derivations were available from explaining examples. However, it made 91
 references for transformational analogy. If P < .092, then 551P + 40 < 91
 and Cascade would correctly predict that the Good solvers make fewer
 physical references than Poor solvers.

 Chi et al. (1989) observed that the Good solvers read fewer lines when
 they referred to examples than did the Poor solvers (1.6 vs. 13.0 lines per
 reference). Cascade can model this effect, although an assumption is again
 needed about the percentage of analogical search control references that are
 physical. Suppose we assume that P of the analogical search control
 references are physical and that a physical reference by analogical search
 control reads only one line. On the Good solver run, Cascade read 340 lines
 during transformational analogy and 551*P lines during analogical search
 control, for a total of (551P + 340) / (551P + 40) lines per reference. On
 the Poor solver run, Cascade read 642 lines, for 692 / 71 = 7.1 lines per
 reference. If P > .017 then (551P + 340) / (551P + 40) < 7.1 and Cascade
 correctly predicts that the Good solvers read fewer lines per reference than
 the Poor solvers.

 Notice that the lower bound (.017) on P does not have to be beneath the
 upper bound (.092). If the P had to be above, say, .1 in order to get the
 lines-per-reference finding correct and below .05 in order to get the
 reference frequency finding correct, then Cascade could not model both
 these findings. Thus, these findings jointly have the power to test Cascade,
 and it passed their test.

 Figure 2 summarizes the preceding arguments. It shows the major
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 Unobservable Observable
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 derivational analogical references
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 Less transformational Fewer lines read

 analogy during I per analogical
 problem solving reference

 FIGURE 2 Causes of the self-explanation effect. EBLC = explanation-based
 learning of correctness.

 processes and effects in the Cascade model and how they account for the
 self-explanation correlations.

 Testing Cascade

 Because Cascade was built to simulate the self-explanation effect, it
 probably seems unsurprising that it succeeded. In this section, we argue that
 it should be surprising because Cascade could easily have failed to simulate
 the study's findings.

 The hardest test to pass was to get Cascade to learn as much as the Good
 solvers learned. One subject got all the problems right, so it is likely that she
 learned all 23 to-be-learned rules. To get Cascade to learn as much required
 overcoming two hurdles. The first was to get EBLC to occur on the right
 impasses. This is not so hard to achieve during example studying, but it is
 very hard to achieve during problem solving. We were surprised and
 relieved to see that analogical search control sufficed. The second hurdle
 was to supply overly general rules that created the right sort of domain rules
 when they were specialized. The new rules must neither be too specific nor
 too general. We were surprised to find that appropriate transfer was
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 obtained with an obvious generalization heuristic: Instantiate the rule then
 substitute variables for constants that are specific to problems.

 The next hardest test to pass was to get Cascade to learn as little as the
 Poor solvers did. Two thirds of the to-be-learned rules occurred in the

 problems. The Poor solvers worked just as hard as the Good solvers on
 solving problems, yet they did not seem to learn as much during problem
 solving. Why do two sets of students learn different amounts from the same
 training material? To put it in terms of the Cascade model, the Poor solver
 simulation reaches even more impasses than the Good solver simulation
 during problem solving, so why does it not learn more than the Good solver
 simulation?

 In fact, the Poor solver learned lots of rules during problem solving, but
 most of them were deleted because the Poor solver failed to answer most

 problems. The Poor solver simulation spent most of its time floundering
 because it lacked key rules that were acquired by the Good solver during
 example studying and because it lacked analogical search control. As it
 floundered about, it reached many impasses, but they were not the right
 impasse in that the rules learned at these impasses were not correct.
 Moreover, resolving these impasses let the Poor solver continue along a
 garden path that never terminated in a solution. When the Poor solver
 finally quit (actually, runs were halted by the experimenter after 20 min),
 the rules it learned were deleted. This behavior is consistent with a

 preliminary analysis by Chi, VanLehn, and Reiner (1988), who analyzed the
 protocols of a Good solver and a Poor solver as they solved the same
 problem. The Poor solver's protocol was divided into 77 episodes, and 30 of
 these resulted in impasses. (An impasse was identified as an outcome of an
 episode whenever the student believed that the next step that should have
 been executed could not be performed. Some 98% of the impasses were
 identified by explicit statements such as "I don't know what to do with the
 angle" or "So that doesn't work either"). Many of these impasses seemed to
 result in acquiring incorrect beliefs. In contrast, the protocol of the Good
 solvers was divided into 31 episodes, only 7 of which resulted in impasses.
 In 6 of these, the Good solver seemed to learn a correct piece of knowledge.
 This preliminary analysis indicates that the Poor solvers have proportion-
 ally more impasses (39%) than do the Good solvers (23%) while problem
 solving and that the resulting knowledge is more often incorrect. This is just
 what Cascade does, too.

 The third test to pass was to get Cascade to simulate findings on
 analogical reference. Because Cascade lacks a model of memory, only
 partial success can be claimed here. However, the calculations in the Testing
 Cascade subsection show that it had a chance of failing the test, but
 succeeded nonetheless.

 Although Cascade passed these tests, it is clear that the amount of testing
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 was small relative to the number of assumptions that underlie Cascade's
 design. It is not at all clear from these tests whether all the assumptions are
 necessary. In the next section we delineate the major hypotheses upon which
 Cascade is built and try to give empirical support to each one. Whenever
 possible, Cascade's hypotheses are compared with alternative hypotheses.
 Thus, the next section forms a partial competitive argument for Cascade.
 Although readers can skip it and go directly to the article's final section, it
 reveals much more of the model and its empirical support than any of the
 material presented so far.

 MAJOR HYPOTHESES

 The major hypotheses that together constitute our account for the self-
 explanation effect also function as design principles for the implementation
 of Cascade. Thus, in this section we have the dual task of introducing the
 major assumptions about cognition that underlie the Cascade's design as
 well as arguing on the basis of the protocol data that these assumptions are
 reasonable ones to make for this study. Unfortunately, many of the
 hypotheses that could be supported with quantitative protocol analysis have
 not been. We are frequently reduced to making statements like "There are
 many cases of such-and-such" or "No subject said such-and-such." Such
 statements should be supported by coding the protocols and counting the
 number of codes. Because there are about 3,000 pages of protocol, we have
 done this in only a few cases and relied on our memory of the protocols for
 the others. The memory-based statements should be understood as dis-
 closing our motivations for choosing the hypotheses rather than providing
 solid empirical warrants for them. So far, the major formal empirical
 support for the hypotheses comes from the demonstration that Cascade can
 model the self-explanation effect findings, although this too is not as
 constraining as one would ideally like. (The final section of this article
 presents plans for further testing.)

 This section has one subsection for each Cascade hypothesis. The first
 subsection introduces and justifies the hypothesis that the self-explanation
 effect is due to knowledge acquisition methods that occur during both
 example explaining and problem solving. The next subsection argues that
 the acquired knowledge is small relative to the size of the problems being
 solved. That is, the students learn rules rather than cases. This opens two
 issues, which are addressed in the subsequent subsections. First, how do
 students detect when a rule is missing and needs to be learned? Second,
 what methods are used to acquire the new rule? The last few subsections
 consider important details about the representation of rules and the
 explanation processes used by Good and Poor solvers.
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 Hypothesized Sources of the Self-Explanation
 Effect

 Cascade is based on the hypothesis that the self-explanation effect is caused
 by knowledge acquisition that occurs as the students explain examples and
 solve problems. Let us introduce this hypothesis by first examining com-
 peting hypotheses.

 A plausible hypothesis is that the two groups of students accumulated
 different knowledge of physics just before studying the examples. This
 difference could be due to either reading the text of the chapter more
 carefully or having knowledge of physics. The students who had more prior
 knowledge solved more problems correctly and thus were classified as Good
 solvers. Under this prior knowledge hypothesis, all subjects try to explain
 the text and the example lines, but those who have more prior knowledge
 are better able to explain the example and so produce more self-
 explanations (Finding 1 in the earlier list). Moreover, because they produce
 more derivations during example processing, they use fewer references
 (Finding 3) and more specific references (Finding 4) during analogical
 problem solving. Thus, the prior knowledge hypothesis is consistent with
 three of the four findings.

 There are, however, three sets of evidence against the prior knowledge
 hypothesis.

 1. The prior knowledge hypothesis predicts that Poor solvers would utter
 more negative self-monitoring statements because they more often fail to
 explain a line. In fact, they uttered fewer negative self-monitoring state-
 ments (Finding 2).

 2. After reading the text of the target chapter, the students in the Chi et
 al. (1989) study took a test on their knowledge of Newton's laws (Phase 4 in
 the earlier description). The mean scores of the Good and Poor solvers on
 this test were exactly the same. Although affirming the null hypothesis with
 so few subjects is risky, taking the results at face value suggests that both
 groups of students had roughly the same prior knowledge.

 3. Chi and VanLehn (1991) conducted a finer grained analysis of all the
 self-explanations in the protocols, reducing them to a set of 173 distinct
 propositions. For each proposition, they attempted to determine whether it
 was inferred from (a) the example line, (b) commonsense knowledge, (c)
 knowledge acquired from previous example lines, or (d) the text. If the
 Good solvers had more prior knowledge at the time they began studying the
 examples, more of their propositions would be encoded as coming from the
 text. However, the proportion of text sources (Category d) was the same for
 both Good and Poor students, which is inconsistent with the prior
 knowledge hypothesis.
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 Although it is unlikely that all students had exactly the same prior
 knowledge, the aforementioned difficulties indicate that variations in prior
 knowledge cannot be the sole source of the self-explanation effect. There
 must have been some kind of learning going on.

 Because the subjects were explaining examples, a plausible type of
 learning is explanation-based learning (EBL; Mitchell, Keller, & Kedar-
 Cabelli, 1986). Like proceduralization (Anderson, 1983) and chunking
 (Newell, 1990), EBL is a kind of knowledge compilation, in that all the
 knowledge is assumed to be present in some form before the learning
 begins. Learning consists of making the knowledge more efficiently usable.
 However, the hypothesis that self-explanation is caused by knowledge
 compilation has four difficulties.

 1. When the subjects took an untimed test on Newton's laws after
 reading the text (Phase 4), their mean score was only 5.5 out of a possible
 12. This suggests that students did not know much physics after studying
 the text. After studying the examples and solving the problems, the Good
 solvers' mean score increased to 8.5 and the Poor solvers' mean score

 remained at 5.75. This suggests that additional knowledge was acquired by
 the Good solvers from studying the examples and working the problems.

 2. The text did not contain all the information needed by the subjects to
 explain the examples or solve the problems. As explained earlier, a target
 knowledge base of 62 rules was developed and two judges determined which
 of the rules were covered in the text. Of the 62 rules, only 29 (47%) were
 judged to be present in the text before studying the examples. Thus, 33 rules
 representing more than half the knowledge required for explaining the
 examples and solving the problems were not presented in the text and
 presumably were not known by the subjects before they explained the
 examples and solved the problems.

 3. Students took the same test on Newton's laws after studying the
 examples and solving the problems. Chi and VanLehn (1991; Table 6)
 showed that the aspects of Newton's law that were learned were the ones
 emphasized in the examples. This result is difficult to explain if students
 were merely recalling aspects of Newton's law learned during text processing
 but is quite consistent with acquiring knowledge of Newton's laws via
 example studying.

 4. When Chi and VanLehn (1991) classified each of the 173 propositions
 found in the students' self-explanations as coming from text or from
 nontext sources, they found that at most 31.5% could be deduced from
 information presented in the text. This result is hard to explain given the
 knowledge compilation hypothesis, which predicts that propositions would
 be deduced from prior knowledge, of which the most important component
 is information presented in the text.
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 These results suggest that the major prerequisite of knowledge compilation
 was not met, because the students did not seem to have complete knowledge
 before the example studying and problem solving began. Thus, some kind
 of knowledge acquisition must have been going on during the explanation
 of examples and the solving of problems.

 The text presented universal laws of mechanics, such as F = ma. Solving
 problems required more than these laws, however. It required many specific
 rules (or "constituent knowledge pieces," as they are called by Chi and
 VanLehn, 1991), such as

 When a string pulls on an object, there is a force on the object. The force is
 parallel to the string at the point of contact and directed away from the object.
 The magnitude of the force is equal to the tension in the string.

 The text discussed only a few of these rules and only in a cursory manner.
 The others must have been acquired somehow from the examples and
 exercises. One might view this as a rare defect, an omission in this edition
 of the textbook that will surely be corrected in the next edition. However,
 this textbook was already in its third edition. Other science and engineering
 textbooks follow the same conventions for what to explain in the text and
 what to leave unsaid. Mathematics textbooks are even less complete. They
 often make no attempt to present informal rules necessary for solving word
 problems. We believe that knowledge acquisition during example studying
 and problem solving is endemic in formal schooling, and not at all
 idiosyncratic to this particular experimental study.

 Because the examples contained more information than the problems, a
 plausible hypothesis is that all knowledge acquisition occurred during the
 explanation of examples. However, using the 33 rules that did not occur in
 the text, we estimate that only 11 of the rules were used during the
 examples. The other 22 were first used during the problems because they
 dealt with situations and objects (e.g., springs) that did not appear in the
 examples. This suggests that two thirds of the rules were acquired during
 problem solving. Thus, it appears that some kind of knowledge-level
 learning is going on during both example explaining and problem solving.
 This is the hypothesis on which Cascade is based.

 Derivation Completion

 A prototypical knowledge acquisition task is concept formation, wherein
 the learner is presented with examples and is expected to generate a concept
 that describes them. For instance, a learner might be presented with
 examples of a certain species of flower and be asked to form an operative
 definition of the species (e.g., has four blue petals, a 5 mm stamen, etc.). In
 concept formation, the piece of knowledge to be learned is about the same
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 size as the elaborated example. However, in learning physics, the knowledge
 to be learned while studying an example is much smaller than the example's
 derivation. (We use derivation to stand for all the reasoning required to
 produce a correct answer to an example or a problem. We use example lines
 to stand for that part of the derivation that is printed as the example's
 solution.) A derivation might involve hundreds of rules, most of which are
 quite familiar to the learner because they were used in earlier derivations. A
 derivation may require only one or two new, unfamiliar rules.

 Even though the knowledge to be learned is much smaller than the
 example's derivation, the learner could in principle use a concept formation
 approach and generate a description that covers the whole example. For
 instance, a physics student might say, "Not all of that solution makes sense,
 so I'll just remember that whenever the problem has two blocks attached to
 a rope that goes over a pulley, the solution is to write down those equations
 and solve them." Although we never saw such a statement in the protocols,
 this approach to learning appears computationally viable.

 The Good solvers rarely take such an approach. Instead they rederived
 each line of the solution from the preceding lines. When they encountered
 a line that they could not derive, they tried to find the gap in their
 knowledge that was causing them trouble. For instance, one subject, P1,
 could not explain the line "Fax = -Fa cos 300." Although she knew Fax
 was the projection of force Fa onto the x-axis and that the cos 300 was due
 to projecting a 1500 vector onto the x-axis, she could not explain the
 negative sign. She wondered, "How did they get that negative in there?"
 After much work, she eventually concluded, "The reason the negative is
 there is because the x-component [of force Fa] is in the negative direction on
 the x-axis." This bit of explanation allowed her to finish explaining the line
 and eventually the whole example. Subject P1 was typical of the other Good
 solvers. They tried to localize the defect in their knowledge and then
 invented as small a piece of knowledge as necessary for overcoming the
 defect and completing the explanation.

 Earlier work has also shown this approach to be computationally viable,
 and it has been independently invented many times (Ali, 1989; Anderson,
 1977, 1990; Bergadano, Giordana, & Ponsero, 1989; Berwick, 1985;
 Danyluk, 1989; Fawcett, 1989; Genesereth, 1983; Hall, 1988; Lewis, 1988;
 Martin & Redmond, 1988; Pazzani, 1990; Pazzani, Dyer, & Flowers, 1986;
 Schank, 1986; Sleeman, Hirsh, Ellery, & Kim, 1990; Smith, 1982;
 VanLehn, 1987; VanLehn, Ball, & Kowalski, 1990; Widmar, 1989; Wilkins,
 1988). The approach has no standard name, so we suggest derivation
 completion, because the essential similarity is that the learner guesses a new
 piece of knowledge that allows a derivation to be completed.3 We hypoth-

 3VanLehn (1987) used "learning by completing explanations" and Hall (1988) used "learning
 by failing to explain" for roughly the same class of learning systems. However, Cascade can
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 esize that derivation completion is the major approach used by our physics
 students for acquiring new knowledge and thus have built Cascade to
 embody it.

 There are two major steps in derivation completion. First the learner
 must locate a gap in a derivation that warrants filling, and then the learner
 must find a new piece of knowledge that will bridge the gap. These two steps
 are discussed in turn.

 Locating a Knowledge Gap

 Localizing a gap in one's knowledge is difficult. The first sign of missing
 knowledge is an impasse: A goal cannot be achieved with any rule in the
 knowledge base. For instance, subject P1 could not achieve the goal "Show
 that the sign of the projection formula is negative." The existence of an
 impasse always indicates that some knowledge is missing, namely, the rules
 needed for achieving the goal. However, it is not immediately clear whether
 this defect is worth fixing. It could be that one has wandered off the
 solution path or made an unintentional error (a slip), which would make
 this impasse occur even if one had complete knowledge of the domain. In
 this case, the right response to the impasse is to back up and try again. P1
 entertained this possibility explicitly. Just after she reached the minus sign
 impasse, she went back and checked her earlier work. Only when she had
 assured herself that there were no slips and no other ways to explain the line
 did she proceed with hunting for a new rule. In principle, there is no way to
 know whether a given goal is part of the derivation of a correct answer until
 one has actually generated the whole derivation. Thus, one can never tell in
 principle whether an impasse is worth inventing a rule for until one has tried
 it and obtained a derivation. All learners, computational as well as human,
 must use heuristics for guessing whether to back up at an impasse or invent
 a new rule.

 We hypothesize that all subjects used the same heuristic as P1, and
 therefore we built Cascade to use this heuristic exclusively. Whenever

 learn from problem solving as well as from example explaining, so the broader term
 "derivation completion" is more appropriate. The terms "impasse-driven learning" (VanLehn,
 1986) and "failure-driven learning" (Schank, 1982) have similar extensions but exclude systems
 such as Sierra (VanLehn, 1987), which collect several incomplete derivations and compare
 them before deciding how to complete them. Although some derivation completion systems
 use plausible reasoning to fill in the gaps in an explanation, the term is meant to exclude
 systems, such as Cohen's (1990), DeJong and Oblinger's (in press), and Eskey and Zweben's
 (1990), that build an explanation with plausible reasoning then convert the whole explanation
 into new domain knowledge. These systems would be derivation completion systems if they
 located the weakest links in their chain of plausible reasoning and built small pieces of
 knowledge that are relevant to just those gaps; however, this is not what they do.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms



 A MODEL OF SELF-EXPLANATION 35

 Cascade encounters an impasse, it backs up and explores all alternatives for
 generating a solution. (Currently, Cascade does not make slips, so it does
 not check for them.) Only when it fails to find an alternative route to a
 solution does it return to processing the impasse. Notice that Cascade
 returns to the original impasse. In trying to find alternative routes, Cascade
 may encounter other impasses. If one of these alternative routes is a correct
 solution path, then its impasse should be the one to resolve. But Cascade
 has no way to know with certainty which of all the routes it explored is most
 likely to be a correct solution path. It guesses that the first route it explored
 is most likely to be correct, so the first impasse it encountered is the best one
 to resolve.

 Computational experiments show that this heuristic works well during
 example explaining, but works well during problem solving only if search
 control heuristics ensure that the first path explored is likely to be a solution
 path. When Cascade is explaining an example, the lines of the printed
 solution tend to keep it on a correct solution path even without the help of
 search control heuristics. When Cascade is solving a problem, there are no
 solution lines, so, without search control, it tends to wander off the solution
 path rather quickly. The first impasse reached is usually caused by being on
 a wrong path. Nonetheless, Cascade resolutely applies its heuristic, finds
 that all other paths are blocked, and sets about fixing the impasse by
 inventing a new rule. At best, this is a waste of effort. At worst, the newly
 acquired rule is not a correct rule of physics even though it caused the
 derivation to go through. Subjects do not run amok like this, so some kind
 of search control is needed to keep Cascade on the solution path. Such
 search control is needed only for solving problems because the example lines
 provide equivalent constraint during example explanation.

 We hypothesize that the missing search control during problem solving is
 provided by analogies with examples' solutions. The protocols provide
 ample evidence of the use of analogy. Subjects often turned to the page with
 the example on it or mentioned the example as they worked. All 8 subjects
 used analogy some of the time (Chi et al., 1989). Example-exercise
 analogies are heavily used by subjects in other task domains as well
 (Anderson et al., 1984; Pirolli & Anderson, 1985). Most models of
 analogical problem solving divide the process into three phases: retrieving
 an example, forming a mapping between the example and the problem, and
 applying information from the example to the problem. These phases will
 be discussed in turn.

 Retrieving an example seems to be governed by visual processing. All the
 examples in the study had a diagram, such as the one shown in Figure 1. All
 but five of problems had a diagram as well. Subjects seemed to use these
 diagrams to help them locate an appropriate example for the problem they
 were working on. For instance, one subject said, "This looks very much like
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 the one I had in the examples. Okay. Should I just go right to the problem
 [example], which I distinctly remember? I mean, even the angle is the same
 here. Or should I try to do it without looking at the example?" The subject
 said this before reading the text of the problem, so apparently her retrieval
 of the example was based solely on the diagrams. Even when a subject's
 memory for the diagrams failed, it was not difficult to find an appropriate
 example because there were only three examples to search through and they
 had very distinct diagrams. In all of the protocols, there was only one case
 where a subject tried and failed to find an appropriate example. Thus, it is
 not the case that Good solvers were better at analogical retrieval than were
 Poor solvers, because they were all at ceiling. Cascade does not model the
 processes involved in retrieval because they seem somewhat specific to this
 study and the resulting retrievals were not a source of differences between
 Good and Poor solvers. Cascade was simply given a function, analogical
 _retrieval, which takes the name of a problem as input and delivers one or
 more example names as output.

 Forming a mapping between an example and a problem means deciding
 which objects in the example correspond to which objects in the problem.
 We noticed that the subjects' first look at an example was more extended
 than other references to the example during the same problem. We believe
 that during the first reference, the subject built an analogical mapping as
 well as checked to see if the example was analogous enough with the
 problem to warrant using it. The mapping was used during this initial
 reference to the example and all subsequent ones during the solution of the
 current problem. Because the problems were often quite similar to the
 examples, the subjects always found the same, correct mapping. The lack of
 individual variation made it difficult to infer the heuristics used by subjects
 to select mappings. Cascade uses a set of heuristics based on the types of the
 objects (e.g., physical objects can only be paired with other physical
 objects, quantities with quantities, etc.). These yield the mappings that
 subjects chose, but there is no way to tell from these data whether these
 heuristics are the ones actually used by the subjects.

 The retrieval and mapping processes could be used to import many kinds
 of information from the example to the problem. In this case, the subjects
 needed search control information: Which rule should be used to achieve

 the current goal? We hypothesize that they used the mapping to convert the
 goal from the problem into an equivalent goal for the example and then
 searched the example's derivation for that goal. They might have said, for
 instance, "My goal is to find the tension of String A, and String 1 in the
 example is analogous to String A, so I'll look for the tension of String 1 in
 the example." The search for an equivalent goal required recall or recon-
 struction of the example's derivation because the example's printed solution
 did not contain goals, although perusal of the printed lines may have
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 stimulated the recall of the derivation. Having found an equivalent goal,
 subjects next needed to recall which rule they had used to achieve it. If they
 succeeded in this, then they were nearly done, because no further analogical
 mapping was required. The rule was presumably a generic structure whose
 variables could simply be instantiated in order to apply it to the current goal
 of the problem.

 This whole process amounted to a search control heuristic: To achieve a
 goal, it is wise to use a rule that achieved an equivalent goal in an example
 that is analogous to this problem. We call this heuristic mechanism
 analogical search control (cf. Jones, 1989).

 Methods for Filling Gaps in Derivations

 After learners had located a gap in their knowledge, the next step in
 derivation completion was to find a piece of knowledge that would bridge
 the gap. Our hypotheses are that finding an appropriate piece of knowledge
 became a goal in itself, that subjects had multiple methods for achieving
 such goals, and that if a method succeeded in acquiring an appropriate piece
 of knowledge, the knowledge was stored in memory. P1 provides a clear
 illustration of this process. After she detected that she could not explain the
 minus sign in "Fax = - Fa cos 300," she still had to figure out how to bridge
 that gap by recalling or constructing knowledge that would produce the
 minus sign in this particular case. First she consulted a table of trigono-
 metric identities, because, as she put it, "I remember them doing strange
 things with the trig functions being negative and positive for no apparent
 reason." When this approach failed, she next looked up cos 30 in a table,
 hoping that it would come out to be a negative number. When this failed,
 she began her third approach. The protocol reads:

 P1: Hmmm, negative cosine 30, why would they say, ahhh, ummm. ...
 The, ohh, okay maybe it's just because the A component is the X component
 of force A is negative. So they just. . . . Well, okay, I'll, I'll try that for a
 while. Let's see if that works, 'cause that makes sense.
 E: What makes sense?

 P1: The reason the negative is there is because the X component is in the
 negative direction on the x-axis.

 P1 did produce the correct rule, but it is not clear how she did it.
 Although she could have recalled it from her mathematics courses, we
 believe she was constructing it. She probably noticed that the vector lay
 above the negative part of the x-axis and then applied an overly general rule
 for mathematical calculations, which could be called conservation of
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 negativity. When a negative quantity is transformed, the resulting quantity
 is often negative even though the negativity might be expressed somewhat
 differently than it was in the original quantity. In this case, the negativity of
 the x-location of the vector was preserved as it was projected and became a
 formula. The negativity changed from a locative encoding to an explicit
 negative sign. The point is that P1 bridged the gap by adopting an explicit
 goal of finding knowledge that would complete the derivation. She tried
 three methods, and the last one succeeded. This allowed her to complete the
 derivation. Evidence is presented later showing that she actually learned a
 new rule from the experience.

 The hypothesis is that subjects seek knowledge when they detect that they
 are missing some and that they use multiple methods to achieve their
 knowledge acquisition goals. This hypothesis is hardly novel-virtually all
 the derivation completion learning models use it. The models differ
 primarily in the knowledge acquisition methods they use. For the sake of
 exposition, methods found in the literature are grouped into several broad
 categories and discussed next.

 Acquiring knowledge by reading. One way to acquire knowledge is
 to seek it in the textual part of the instructional materials. For instance, one
 subject could not explain the units in an example's equation because she did
 not know the American unit of mass. She looked it up in the text and
 presumably stored a rule in memory stating that slugs are the American unit
 of mass. This method of filling gaps in one's knowledge is the main method
 of knowledge acquisition in early versions of ACT* (Anderson, 1983).

 To find out how much our subjects used this method, we counted all
 references to the text or the examples made by the subjects. Of 433
 references, 129 (30%) were to the chapter's text. Few of these 129 references
 were as focused and successful as the aforementioned slugs episode. Most
 frequently, students hunted through the textbook for an equation con-
 taining the currently sought quantity. Any equation containing a quantity
 of that type will do. It could occur in the middle of an apparently irrelevant
 example or even in a different chapter of the textbook. Most of the subjects
 seemed to know that this method for bridging gaps was not likely to yield
 correct knowledge. They often made comments such as, "I hate doing this."
 We doubt that they believed the rules (if any) acquired from this activity
 were correct rules of physics. Because searching the textbook for equations
 occurred rather frequently in the protocols, Cascade has a model of it,
 called transformational analogy. Transformational analogy does not pro-
 duce new rules when it occurs.

 Acquiring knowledge by syntactic induction. A common technique
 for concept formation is to compare multiple instances of the concept and
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 conjecture that their common features are the defining properties of the
 concept. Using this and related techniques, students construct concepts by
 making syntactic comparisons of the instances; thus this method is often
 called syntactic induction or similarity-based learning. Syntactic induction
 can be used for constructing knowledge to fill gaps. The basic idea is to
 collect several instances of the same gap and compare them. For instance,
 P1 could have found several cases in which a minus sign appeared in a
 projection formula, compared them, and discovered that they possessed a
 common feature: The vector being projected was over the negative part of
 the axis onto which it was being projected.

 Syntactic induction techniques for filling gaps have been used by many
 derivation completion programs (Ali, 1989; Danyluk, 1989; Fawcett, 1989;
 Hall, 1988; VanLehn, 1987; Wilkins, 1988). Often the basic mechanisms of
 syntactic comparison are supplemented by syntactic heuristics, such as
 preferring the smallest rule that will fill the gap. In some derivation
 completion programs, syntactic heuristics alone induce a rule from a single
 instance of the gap (Anderson, 1977; Berwick, 1985; Genesereth, 1982;
 Martin & Redmond, 1988; Sleeman et al., 1990; Smith, 1982).

 A version of syntactic induction was implemented in an early version of
 Cascade, but it did not perform well. At an impasse, the inducer sees if
 there is a new rule whose conclusion matches the current goal but whose
 antecedent is false in the current situation. If it finds such a rule, it drops the
 mismatching parts of its antecedent, thus generalizing it. This allows the
 inducer to achieve the current goal and thus resolve the impasse. If no such
 rule is found, a new rule is created by making its conclusion be the current
 goal and its antecedent be the current situation, with variables substituted
 for problem-specific constants (objects and numbers).

 We had not even fully implemented this method of knowledge acquisition
 before it became clear that it would have severe problems. First, most of the
 new rules are learned during problem solving, but this technique can invent
 a new rule only during example explaining. Second, the rules it invents are
 limited in the kind of conclusions they can draw. For instance, if the goal
 is to find the tension of stringA and the example shows that string_A has
 a tension of 5, then the new rule's conclusion will have the form tension(X)
 = Y, because variables X and Y have been substituted for the object and
 number. However if 5 does not appear anywhere in the given situation
 because it is the result of some arithmetic calculation, then the variable Y
 will not appear in the rule's antecedent. Thus, the rule draws a nearly useless
 conclusion: The tension of an object is something, but I do not know what.
 Although there are ways to syntactically induce arithmetic formulas (e.g.,
 VanLehn, 1987), they require many more examples than the one or two
 available for formulating the new rules in this instructional situation.

 The conclusion is that there do not appear to be enough examples of new
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 rule applications for syntactic induction methods to work in this instruc-
 tional situation.

 Acquiring knowledge by goal-product analogies. Another knowl-
 edge acquisition method is based on drawing analogies between problems
 and worked examples. Anderson's (1990; Anderson & Thompson, 1989)
 latest model of skill acquisition is typical of this technique. Anderson's
 model assumes that derivations of examples are available in memory and, in
 particular, that every goal in the derivation is paired with the external
 product generated by achieving it. Because most of Anderson's examples
 involve LISP programming, the external products of most goals are small
 pieces of LISP code. During problem solving, if the learner cannot find a
 rule to achieve a goal, it seeks a similar goal in the derivation of an example.
 If a goal is found, the learner converts the old goal's product into the terms
 of the current problem, thus creating a product for the current problem's
 goal. Proceduralization then creates a rule that summarizes the results of
 this analogical knowledge acquisition process. Similar knowledge acquisi-
 tion methods have been used in other models (e.g., Lewis, 1988; Pazzani,
 1990; Pazzani et al., 1986). They all map a goal-product pair from an
 example to a current problem. They ignore the derivation of the product
 from the goal. The difference between this technique and Cascade's
 analogical search control is that this technique imports the external product
 generated by processing a goal, whereas analogical search control imports
 the name of the rule used to achieve a goal.

 A version of goal-product analogy was implemented in Cascade but
 proved to have limited utility. As with syntactic induction, this technique
 fails when the to-be-learned rule first appears during problem solving.
 Because there is no earlier application of it during example studying, there
 is no early goal-product pair to which to refer. Even when the technique
 finds an appropriate goal-product pair, it often fails anyway. In physics,
 the most common goal is to seek the value of a quantity. The external
 product of such a goal is usually a number or a vector, and such atomic
 entities do not usually map successfully. For instance, suppose the prob-
 lem's goal is to find a tension for String A, and the example's derivation says

 that String l's tension is 5 Newtons. An analogical map can pair the two
 strings, the two goals, and the units (Newtons), but what should it pair with
 the 5? The 5 was calculated by simplifying an arithmetic expression,
 weight(blockl) / [sin(3) - cos(30)/sin(45)], where weight(blockl) = 10
 Newtons appears in the example's givens. This expression can be mapped
 from the example to the problem by substituting the problem's block for
 blockl and the problem's angles for 30 and 45. However, after the
 expression is simplified to 5, there is nothing left to map. Simplification
 destroys information that is needed for analogical mapping. We conjecture
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 that goal-product analogy works adequately only when the external product
 of a goal is nearly isomorphic with the derivation used to produce it (cf.
 Carbonell, 1986). That is why it works so well for LISP but not for physics.

 Explanation-based learning of correctness. Another knowledge
 acquisition technique, which we call explanation-based learning of correct-
 ness (VanLehn, Ball, & Kowalski, 1990), fills a gap by applying an overly
 general rule, which is not normally used during reasoning. If this applica-
 tion leads ultimately to a successful derivation, then a specialization of the
 rule is created and inserted into the set of rules that is normally used during
 reasoning. The analysis of P1 presented at the beginning of this section is an
 illustration of explanation-based learning of correctness, where "conserva-
 tion of negativity" is the overly general rule. The same basic idea appears in
 many forms in the literature. Schank's (1986) explanation patterns are a
 kind of overly general rule used to bridge gaps in explanations of human
 interest stories. Causal attribution heuristics are used by many theorists to
 explain how subjects bridge gaps in explanations of the physical world
 (Anderson, 1990; Lewis, 1988; Pazzani, 1990). Several authors use deter-
 minations (Davies & Russell, 1987) as constraints on learning (Bergadano et
 al., 1989; Widmar, 1989). Goodman (1956) uses over hypotheses to explain
 scientific induction.

 Any version of this method for filling gaps requires distinguishing
 between knowledge that is normally used and knowledge that is reserved for
 bridging gaps. Explanation patterns and causal attribution heuristics are
 expressed in a different format from the knowledge used normally in
 making explanations. Explanation-based learning of correctness uses the
 same representation for both types of knowledge but keeps them distinct by
 marking the rules that are normally used for solving problems in the task
 domain with the name of the domain (e.g., "physics"). This will make it
 easier to augment Cascade with a module that acquires overly general rules
 by syntactic generalization of normal rules (Ram, 1990; VanLehn & Jones,
 in press).

 The hypothesis that domain rules are marked seems necessary to account
 for some common aspects of classroom problem solving. If students acquire
 an incorrect rule and then later learn that it is incorrect, they probably do
 not forget the rule even though they stop using it. Thus, there must be some
 way of indicating which rules should not be used even though they are
 potentially applicable. This could be represented by removing that task
 domain's mark from the rule. Similarly, subjects rarely use rules from other
 task domains even when they are potentially applicable. For instance, while
 explaining an example in which a block was sliding on a surface, one subject
 apparently knew from common sense that the block will not jump up or
 sink into the surface, but she could not prove it with her current physics

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms



 42 VANLEHN, JONES, CHI

 knowledge. After trying several approaches, she gave up and commented,
 "The only way you could have known that there's no acceleration in the
 y-direction is not from equations but from just knowing something about
 the situation." We believe that subjects prevent themselves from considering
 such knowledge by marking only some of the knowledge they have about
 blocks, surfaces, etc. as formal physics knowledge. We suspect that this
 system of marking is used only for task domains taught in school. It may be
 something that students learn to do early in school because the resulting
 reduction in search makes their problem solving more efficient and more
 often correct. Nonschool problems can be solved with knowledge of any
 kind.

 As shown earlier, explanation-based learning of correctness works quite
 well. In particular, it is able to fill gaps that occur during problem solving,
 which is something that syntactic induction and goal-product analogy
 cannot do. However, it is unable to handle one learning event, wherein a
 knot is declared to be the body, so analogy abduction was added. Analogy
 abduction is similar to goal-product analogy.

 Summary. The following list indicates which of the aforementioned
 learning methods are modeled in Cascade:

 1. Reading: Searching the textbook for equations is modeled, but
 produces no new rules.

 2. Syntactic induction: Was modeled, but currently turned off.
 3. Goal-product analogies: Is modeled, but is rarely used.
 4. Explanation-based learning of correctness: Is modeled and is fre-

 quently used.

 There are other methods for bridging gaps in derivations, such as scientific
 discovery (VanLehn, 1991a), that do not appear in this list because we saw
 no signs of them in the protocols.

 Goal Specificity of New Knowledge Pieces

 Most of the goals in physics reasoning are to find a value for a quantity, and
 most of the inferences involve equations. Thus, a typical goal might be to
 find the tension in a certain string, and an equation to achieve that goal is
 tension(S) = magnitude(force(B,S)), which says that the tension in string S
 is equal to the magnitude of a tension force acting on body B due to string
 S. Suppose that a student acquires this rule at an impasse where he or she
 is trying to achieve the tension goal. Would this piece of knowledge be
 invertible, so that the student can use it to achieve a goal of finding the
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 magnitude of a tension force? Although the protocols are silent on this
 point, we believe that students are able to invert new pieces of knowledge.
 That is, we believe that when subjects have learned an equation, they can
 use it to find any of the quantities that the equation mentions. For instance,
 if they learn F = ma in a context in which net force is sought, they can
 nonetheless apply it in a context in which mass is sought. Although this
 particular claim is untested, there are some related transfer findings that
 provide indirect support.

 Singley and Anderson (1989) reviewed experiments from Anderson's
 group that suggest that there are two kinds of transfer, procedural transfer
 and declarative transfer. Procedural transfer is use specific but develops
 only after practice. That is, when a person uses a piece of knowledge in one
 context several times and thus gets faster and more accurate at using it, this
 practice does not make it easier for them to use it in a new context. In terms
 of Cascade's task domain, suppose one group of subjects is taught that w =
 mg with examples and exercises in which weight is always the sought
 quantity. Another group of subjects is taught that w = mg with examples
 and exercises in which mass is the sought quantity. They are given an hour
 of practice, during which time their performance (speed and accuracy)
 increases. After the practice period, the group's tasks are switched and their
 performance is measured. Singley and Anderson would predict that the
 group who practiced seeking weights would do as poorly on seeking masses
 as the mass-seeking group did at the beginning of their practice period.
 Similarly, the mass-seeking group would look like weight-seeking novices.
 Thus, substantial practice causes procedural transfer, which is specific to
 the particular goals for which a piece of knowledge (w = mg, in this case)
 is put.

 Declarative transfer is not use specific and does not require practice to
 develop. As an illustration of declarative transfer, suppose the practice
 periods of the preceding two groups is reduced to about a minute or two, so
 that each group uses w = mg only once or twice before being switched to
 the transfer task. Singley and Anderson (1989) would predict that both
 groups would perform about the same on their transfer task as their
 opposites did during training and, moreover, that both would do better on
 their transfer tasks than a control group who received no practice at all on
 w = mg before being tested. This illustrates declarative transfer: Knowl-
 edge of the equation w = mg, regardless of whether it is learned in the
 weight-seeking condition or the mass-seeking condition, is necessary and
 sufficient for the initial few uses of the equation for any purpose.

 Cascade's derivation completion methods are knowledge acquisition
 methods, rather than knowledge compilation mechanisms. Thus, Singley
 and Anderson's (1989) results suggest that the knowledge constructed by
 these methods can be declaratively transferred. This suggests that they be
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 represented as equations, because equations are not specific to the goal that
 was present at the time the knowledge was acquired. Therefore, instead of
 representing w = mg as three production rules

 If body(B), problem(P), mass(B) = M and gravconstant(P) = G,
 then weight(B) = M*G.

 If body(B), problem(P), mass(B) = M and weight(B) = W, then
 gravconstant(P) = W/M.

 If body(B), problem(P), gravconstant(P) = G and weight(B) = W,
 then mass(B) = W/G

 Cascade should use one equation:

 weight(B) = mass(B)*grav-constant(P).

 However, this drops the condition that B be a body and P be the current
 problem, making it necessary to add applicability conditions. Thus, w =
 mg should be expressed as

 If body(B) and problem(P), then weight(B) = mass(B)*grav-
 constant(P).

 Cascade's interpreter must be more complex than a typical rule interpreter
 in order to use knowledge expressed in this form, because it must use
 algebraic transformations. As an illustration, suppose that Cascade is given
 the goal of finding mass(block4). To apply the preceding conditioned
 equation, it first shows that body(block4) and problem(prob3) hold, then it
 sets the subgoals of finding the other quantities in the equation,
 weight(block4) and grav-constant(prob3). Achieving these subgoals means
 that the values of the two quantities become known. Suppose the weight is
 98 and the gravitational constant is 9.8. The interpreter must combine the
 values for the subgoal quantities to form a value for the goal quantity.
 Substituting the subgoals' values into the equation yields 98 =
 mass(block4)*9.8. Solving the equation yields mass(block4) = 98 / 9.8 =
 10. Cascade has found a value for the sought quantity, thus achieving the
 goal. Notice that it was necessary to use algebraic transformations to solve
 the equation. This is inevitable when the knowledge is expressed in a
 format, such as conditioned equations, that allows the same piece of
 knowledge to be used for achieving multiple goals. When the knowledge is
 expressed as multiple single-goal rules, such as the three production rules
 mentioned earlier, then algebraic knowledge is not needed during interpre-
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 tation. For instance, in ACT*, conditioned equations would be represented
 as structures in declarative memory, and production rules would implement
 an interpreter for them. The production rules would embed the algebraic
 knowledge necessary for using the conditioned equations.

 In short, in order to obtain the type of declarative transfer that we believe
 is common in this task domain, it is useful to represent knowledge as
 conditioned equations and to embed algebraic knowledge in the interpreter.
 Because procedural transfer develops only with practice, modeling it would
 require a model of memory, which will be added to later versions of
 Cascade (see Step Id in Table 3).

 Local Explanation

 Cascade explains each line of an example individually, but it does not try to
 find a plan or schema that spans all the lines. That is, Cascade does local
 but not global explanation (plan recognition). This design is motivated by
 examination of the protocols. Of the 204 self-explanation statements
 analyzed by Chi and VanLehn (1991; Table 4), only 13 (6%) related goals
 to groups of actions. Plan recognition appears not to be a common process
 in this instructional situation.

 Good Versus Poor Explanation of Examples

 The simulation rules are based on the hypothesis that the only difference
 between Good and Poor solvers is that the Good solvers explain more
 example lines than do the Poor solvers. This assumption is consistent with
 several observations that show that the contents of Good and Poor solvers'

 self-explanations are not significantly different (see Tables 4 and 7 in Chi &
 VanLehn, 1991). The Good solvers just produced more self-explanations
 than the Poor solvers did.

 Summary

 The preceding argument may be summarized as follows. First, students
 invented new knowledge during example studying and problem solving,
 rather than recalling and operationalizing knowledge acquired by reading
 the text. Moreover, much of this knowledge was acquired during problem
 solving, and not just during example explaining.

 Next, when a derivation used previously unpresented knowledge, only a
 few small pieces of knowledge were new. Although students could have
 simply stored a whole derivation whenever they detected that it involved
 some new knowledge, they instead tried to find the gap in their own
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 derivation and infer a piece of knowledge that filled it. This technique is
 called derivation completion.

 Detecting a gap was difficult because some impasses were caused by poor
 search control decisions or slips. We believe that subjects usually checked
 their partial derivation for slips and to determine if an alternative solution
 path existed. Only when they were satisfied that the impasse was inevitable
 given their current knowledge did they proceed to search for knowledge to
 fill it. Computational experiments showed that this was insufficient in itself
 to account for subject's' behavior during problem solving, so we conjec-
 tured that subjects used the derivations produced while explaining examples
 to constrain their generation of derivations while problem solving. This
 technique is called analogical search control.

 Subjects had multiple methods for finding new knowledge. The most
 productive one for our subjects seems to have been EBLC, wherein new
 domain knowledge was created by specialization of overly general knowl-
 edge.

 Subjects can probably perform a type of declarative transfer, to use
 Singley and Anderson's (1989) term, wherein an equation acquired while
 seeking one quantity can be used later when another quantity in the
 equation is sought. This suggests that knowledge be represented as condi-
 tioned equations and that algebraic equation-solving knowledge be built
 into their interpreter.

 When students explained an example's solution, they rederived each line
 but did not try to find an overall plan that spanned all the lines. This same
 process was used by both Good and Poor solvers. The Good solvers merely
 chose to explain more example lines than did the Poor solvers.

 DISCUSSION

 What Was Discovered While Developing Cascade

 We had originally thought that EBLC and analogical search control were
 completely independent. However, in trying to simulate the Good solvers,
 we discovered that (a) most of the rules that need to be learned were first
 used during problem solving, and (b) Cascade tended to learn at the wrong
 impasses when analogical search control was turned off during problem
 solving. In retrospect, this result is an obvious, inevitable, general principle
 of machine learning. If missing knowledge is required to solve a problem or
 explain an example, then all paths from the initial state are blocked -they
 terminate in an impasse. There is no way in principle for the learner to know
 which of these impasses, if resolved, would lead to a solution. However, if
 the learner is explaining an example, the example lines often permit only
 one partial solution path and thus only one impasse. Because the example's
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 problem is solvable, resolving the impasse will probably lead to a solution.
 Thus, the learner can assume that this impasse probably was caused by a
 missing piece of knowledge, so inventing a rule that resolves it is likely to
 (re)construct a correct domain rule. On the other hand, if the learner is
 solving a problem, there are no printed solution lines to guide generation of
 a derivation, so there tend to be many partial solution paths that terminate
 in impasses. In order to increase the probability that a correct rule will be
 learned, the learner needs some way to intelligently select one of these
 partial solution paths/impasses. Ample search control knowledge must be
 learned before encountering the impasse. We thus arrive at the novel result
 that search control learning is required for all kinds of derivation comple-
 tion, including EBLC and analogy abduction, that occur during problem
 solving. Derivation completion during example studying requires less search
 control knowledge, if any. This is consistent with the finding that examples
 cause faster learning than equivalent problems (e.g., Pirolli, in press;
 Sweller & Cooper, 1985). This line of argument is backed by computational
 experiments with Cascade. It learned 15 rules during problem solving when
 analogical search control was turned on but only 6 when it was turned off.
 Thus, 60% of the rules learned during problem solving required analogical
 search control.

 Another major surprise was that the increased learning of the Good
 solvers was not due to a single learning mechanism, but rather to a variety
 of interacting mechanisms. According to the Cascade analysis, the ideal
 Good solver learned 23 rules and the ideal Poor solver learned 3. The 20

 rules that were learned by the Good solver and not by the Poor solver came
 from several sources:

 * 8 rules were learned as the examples were explained. Because the Poor
 solver did not explain the examples, it did not learn these rules.

 * 3 rules were learned during problem solving simply because the 8 rules
 learned during example studying set up contexts that allowed them to
 be learned by EBLC, even without the aid of analogical search control.

 * 9 rules were learned by EBLC during problem solving using analogical
 search control. Because the Poor solver did not generate derivations
 for the examples, it could not use analogies to them and thus could not
 learn these 9 rules.

 We had originally expected that all rules would be learned during example
 studying, but this turned out to be the source for only 8 of the 20 rules.

 Another major surprise was that self-explanation raised the learning rate
 during problem solving. This result is consistent with the conjecture by
 Pirolli and Anderson (1985) that the way students study examples causes
 some students to learn more while solving problems than other students.
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 Cascade provides an explicit model of this. As far as we know, this is the
 first computational model to show how one kind of training can increase
 the learning rate of a different kind of training. Most models predict only
 additive interactions, in which the amount learned by the combined training
 is the sum of the amounts learned by each training in isolation. This unusual
 prediction of a nonlinear interaction warrants further empirical testing.

 Because we invented overly general rules whenever Cascade encountered
 an impasse that it could not resolve with the existing overly general rules, we
 feared that the resulting collection of overly general rules would be terribly
 ad hoc with no interesting themes or patterns. Fortunately, the result was
 otherwise. The collection of overly general rules fell neatly into two classes.
 Rules in the first class (Rules 1-11 in Table 4) relate property values of two
 objects whenever those two objects are assigned compatible property values
 by the example and the objects themselves have some intrinsic relationship.
 As described in VanLehn and Jones (in press), these rules fall into an
 interesting hierarchy that could be learned by simple generalization and
 strengthening techniques and thus predict a learning-to-learn phenomenon.
 The second class of overly general rules (Rules 39-44 in Table 4) implements
 the basic idea that it is okay to substitute common sense quantities (e.g.,
 pulls and pushes, accelerations, and decelerations) for formal quantities,
 but only if one is really stuck and the resulting substitution leads to a
 successful derivation. In short, computational modeling taught us that most
 rules in this instructional situation could be learned by using two basic
 assumptions: Property-value coincidences are sometimes not accidental,
 and commonsense quantities can sometimes be treated as formal physics
 quantities.

 We had a surprisingly hard time finding a way to transfer knowledge
 from the knot-is-a-body impasse to later problem-solving situations. We
 first attempted to use syntactic induction techniques, but the resulting rules
 either were too specific and did not apply where we saw subjects applying
 their rules or were too general and applied inappropriately. Eventually we
 discovered that a rule could invoke the analogical problem-solving ma-
 chinery directly. This rather unusual type of rule gave us the right
 combination of selectivity and generality. As far as we know, this analogy
 abduction technique is unique in machine learning.

 We did not initially realize that memory plays an important role in
 explaining the findings on analogical references. The protocols showed that
 the Good solvers referred to the examples less than did the Poor solvers,
 and yet analogical search control required that they refer often to the
 derivations of examples. The only way to resolve this apparent conflict is to
 assume that the Good solvers were able to retrieve most of the derivational

 information from memory and thus did not need to look at the examples as
 often as the Poor solvers did.
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 Analogical search control solves a nagging problem in the expert-novice
 literature. When subjects solved a problem whose diagram appears in
 Figure 3A, they drew analogies to two earlier problems whose diagrams are
 shown in Figures 3B and 3C. In some schema-based problem-solving
 systems, it is difficult to get the solver to use more than one schema to solve
 the problem. The solver tends to let one schema dominate the problem
 solving and invokes the other schema as a subordinate. This does not reflect
 the quality of human problem solving (Holland et al., 1986; VanLehn,
 1989). Thus, the problem is supposedly to form a compound schema from
 two component schemas of equal stature. When Cascade solves the problem
 of Figure 3A, it is told that the diagram is similar to two examples' diagrams.
 It retrieves both examples during analogical search control and refers to
 goals from both of them. This produces the mixture of inferences that
 seems required for simulating human problem solving. We were surprised
 that analogical search control solved the so-called schema compounding
 problem. This suggests that a collection of derivational triples plays the role
 of a schema.

 "m1
 "m2

 A.

 e-L
 ;? Id

 "300

 B,

 "m1

 m2

 C

 FIGURE 3 A problem solved by analogy to two other problems.
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 Other Models of the Self-Explanation Effect

 Two other models of the self-explanation effect are under development.
 Reimann (in press) is developing a case-based model of the self-explanation
 effect. Example studying is modeled as plan recognition. Existing schemas/
 plans are used to analyze an example and create an annotated case that
 explains how the various parts of the example fit together to form a whole.
 During problem solving, such cases are adapted and replayed. Students who
 make more self-explanations acquire better annotations, which permit
 better adaptation during problem solving. Like Cascade, the Reimann
 model is based on the assumption that study habits and not prior knowledge
 are the source of the self-explanation effect. The main difference between
 the two models is the grain size of their knowledge representations, which
 in turn governs how they acquire knowledge during example study and use
 it during problem solving. The Reimann model learns example-sized units
 of knowledge (cases), whereas Cascade learns smaller units (rules). There
 are both computational and empirical reasons for using the smaller grain
 size. Computational experiments suggest that transfer is increased by
 storing knowledge as parts of cases (snippets) rather than whole cases
 (Hinrichs, 1988; Kolodner & Simpson, 1984; Redmond, 1990). The Chi et
 al. (1989) protocols suggest that subjects in that study attended more to
 individual lines than to the overall plan of an example, and their attention
 became especially focused when they detected that they needed to learn new
 knowledge. For instance, when P1 could not explain a minus sign, after a
 brief review of her work to this point, she concentrated almost exclusively
 on finding a rule or rules that would explain the minus sign.

 On the other hand, schemas have often been used to explain phenomena
 in the expert-novice literature (e.g., Elio & Sharf, 1990). Because Cascade
 does not have schemas, it is not immediately clear how it can explain, for
 instance, the finding by Chi, Feltovitch, and Glaser (1981) that experts
 classify problems according to the solution method while novices classify
 problems according to their surface characteristics. However, we believe
 this finding can be explained within the Cascade framework if one assumes
 that experts have a vast store of derivations that they use to quickly plan a
 solution to the given problem. This allows them to determine the main
 solution method and to use that as a basis for classification. Novices cannot

 determine solutions quickly enough to do this, so they use surface features
 for classification. Consistent with this explanation, Chi et al. (1981) found
 that experts actually took longer than novices to classify problems (45 sec
 vs. 30 sec per problem). Perhaps other phenomena that have been explained
 with schemas can also be explained in the Cascade framework.

 Pirolli and Recker (1991) are developing a model that can understand text
 as well as examples. Following Kintsch (1986), they model understanding as
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 a process that may involve many levels of elaboration and abstraction. Poor
 students do verbatim processing of the text and examples, leading to
 memory traces that are retrieved and used in a rote fashion during problem
 solving. Good students make deeper explanations. For instance, a model of
 a Good student might explain a sample LISP program by constructing a
 mental model of how the program satisfies its specifications, which would
 in turn involve constructing mental models of program abstractions,
 computations, and functions.

 The Pirolli-Recker (1991) model is similar to Cascade in that both are
 built on the assumption that the self-explanation effect is caused by the
 students' study habits rather than their prior knowledge. Moreover, both
 models use small-grained representations of knowledge rather than cases or
 schemas. There are two main differences, however. Although Pirolli and
 Recker are grounding their model's development on data collected from a
 study of students learning to code LISP by reading chapters from a
 textbook, studying examples, and solving problems, their text, which is
 based on a cognitive task analysis of LISP coding, is probably more
 complete and easier to understand then the physics text used by Chi et al.
 (1989). Because the LISP text clearly states almost all the to-be-learned
 rules, the primary knowledge acquisition method in the Pirolli-Recker
 model appears to be interpretation of text, whereas most rules in Cascade
 are acquired during example studying because they are not mentioned in the
 text. In this respect, the models are complementary rather than antagonis-
 tic. A second difference between the models is that Cascade currently has no
 model of memory, whereas the Pirolli-Recker model has a detailed model
 of the encoding, indexing, and retrieval of mental information. It uses
 Soar's data-chunking facility (Newell, 1990) to implement a version of the
 ACT* declarative/procedural distinction. Much of the learning during
 example studying and problem solving appears to be knowledge compila-
 tion wherein knowledge is reformatted and reindexed to make it more
 useful. Again, the two projects are complementary rather than antagonistic.

 Cascade's Weaknesses and Plans for Further
 Research

 The current version of Cascade, Cascade 3, models knowledge acquisition
 and not knowledge compilation. Like most theorists, we believe that
 knowledge compilation is intimately related to human memory mecha-
 nisms. Clearly, Cascade needs to be augmented with a model of human
 memory in order to be a more complete model of learning. We are
 interested not in neurologically or computationally plausible mechanisms of
 memory, but only in creating a model that will yield pedagogically useful
 predictions about initial knowledge acquisition, transfer, and practice (a
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 "pseudo-student"; VanLehn, 1991b). Therefore, we plan to use a "black
 box" mathematical model of memory that delivers an external performance
 that is an accurate description of human memory. Table 3 shows where the
 black boxes go.

 Another area where Cascade is weak is its model of Poor solvers'

 explanation of examples. The protocols did not reveal much, because the
 subjects just paraphrased the lines, perhaps adding, "Ok, that makes
 sense." When they did explain a line, they said the same kinds of things as
 Good solvers (Chi & VanLehn, 1991). Currently, Poor solvers' processing
 of examples is modeled by making the lines available for transformational
 analogy but not rederiving the lines. However, this fails to explain why the
 subjects thought they understood the lines. We suspect their explanation
 was just like the Good solvers' explanation but they took the example's
 word about the details. For instance, in explaining the line "Fax = - Fa cos
 450," the subject would use the rule that recognized that this was a
 projection equation and produced the four correspondences shown in Table
 1. The Good solvers went on to explain each of these four assertions,
 whereas the Poor solvers may have just stopped at this point and assumed
 that each of the four assertions held. Thus, their explanation did not go as
 deep as the Good solvers' but was otherwise the same. This version of Poor
 solver behavior explains why Poor solvers thought they had successfully
 explained the example. With this addition to the model, our hypothesis
 about the key difference between Good and Poor solvers is twofold: The
 Good solvers rederived more lines than Poor solvers did, and their
 derivations were more complete.

 Cascade's sharp distinction between domain rules and other rules is an
 idealization. When a new rule is acquired, subjects probably do not
 immediately believe that the rule is just as valid as rules they have been using
 successfully for many problems. In the next version of Cascade, rules will
 bear a degree of belief that increases whenever the rule is used in a
 successful derivation (cf. Rosenbloom & Aasman, 1990). The initial degree
 of belief given to a new rule will be a function of the amount of backing up
 that has gone on before the rule's creation. This should capture the
 following intuition: Suppose problem solving has been going smoothly
 when one encounters a resolvable impasse. One might say, "I don't know of
 any kind of force here, but if there were one, that would balance the other
 two forces and explain why the object is at rest." In such circumstances, one
 might believe one has discovered something about physics and form a new
 rule. On the other hand, if one has been floundering about for some time
 and feeling utterly lost, one is unlikely to react to impasses in the same way.
 Cascade should keep a running count of the number of impasses, especially
 ones that could not be resolved and required backing up. As these counts
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 get higher, the degree of belief accredited a new rule is reduced. When the
 counts pass some threshold, rules are no longer formed. The type of
 derivation completion used to induce a new rule should also affect its initial
 degree of belief. EBLC should produce higher degrees of belief than
 analogy abduction. Transformational analogy, which currently does not
 produce rules, should produce rules with even lower degrees of belief. As
 discussed in VanLehn and Jones (in press), representing degrees of belief
 plays a key role in a syntactic induction method for learning overly general
 rules, which may also be added to Cascade. In fact, adopting an explicit
 representation of degrees of belief has many implications for the overall
 design of Cascade that require thorough exploration.

 The next milestone will be to fit Cascade's behavior to the protocols of
 each individual subject. Cascade will be made to explain exactly the
 example lines that the subject seems to have explained, as indicated in
 the protocol, and to explain them to roughly the same depth. When given
 problems to solve, Cascade should reach impasses in the same places
 that the subject does. However, the subject will probably display more
 impasses than Cascade. Currently, Cascade's initial knowledge contains
 every rule mentioned anywhere in the text before the examples. Because
 subjects probably have a less thorough understanding of the text, they will
 probably reach more impasses than Cascade. Therefore, Cascade's initial
 domain knowledge will be adjusted to fit the impasses that it cannot
 explain as deficiencies in example processing. This computational experi-
 ment should help us understand how much of the self-explanation effect is
 due to missing prior knowledge and how much is due to shallow
 self-explanation.

 At places where Cascade did perform EBLC, the subjects in the Chi et
 al. (1989) study generated pauses and other signs of intensive processing,
 but their comments were too vague to indicate whether they were actually
 using overly general rules to resolve their impasses. For instance, in the
 protocol from P1 quoted earlier, EBLC seems to have occurred while the
 subject was saying, "Hmmm, negative cosine 30, why would they say,
 ahhh, ummm..... The, ohh, okay maybe it's just because the A
 component is the X component of force A is negative. So they just. ...
 Well okay I'll, I'll try that for a while." This is typical of other places in the
 protocols where EBLC was supposedly occurring. Clearly, something is
 happening here, but it is far from clear that EBLC is a good
 characterization of it. It could, for instance, be syntactic induction of some
 kind. The only good argument for EBLC over other proposals for
 processes that handle these impasses is that EBLC is computationally
 sufficient and our implementations of the others were not. It would be
 better to settle the issue empirically. For instance, training materials could
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 be designed so that several gaps can be spanned by one overly general rule
 and several others can be spanned by a second. EBLC would predict a
 specific pattern of rule learning events because the subject either learns all
 or none of the rules corresponding to each overly general rule.

 We are currently working on modeling learning in two other task
 domains: conceptual physics problems (e.g., Which direction does a
 pendulum bob fall when you cut its string at the apex of its swing?) and
 combinatorics word problems (e.g., If a professor has four graders to grade
 eight examination questions, how many different ways can she assign
 graders to questions so that each grader grades two examination ques-
 tions?). These efforts have already revealed inadequacies in the equation-
 based representation used in Cascade 3, but it is not yet clear how serious
 they are.

 The processes of derivation completion and analogical search control
 may be the key to learning in many kinds of situations. For instance,
 Palinscar and Brown (1984) showed that reciprocal teaching increases
 learning. Results from 19 published studies on small peer groups (Webb,
 1989) indicate that giving explanations almost always improves learning,
 whereas receiving explanations is seldom correlated with increased learning.
 Because reciprocal teaching increases the amount of explanation giving, and
 explanation giving is similar to self-explanation, reciprocal teaching may
 succeed just because it encourages EBLC and the other processes modeled
 by Cascade.

 A Final Comment

 A good theory of knowledge acquisition methods could improve the design
 of instructional situations and the training of teachers, because teachers and
 instructional designers need to know how students will react to the
 examples, exercises, explanations, and other information to which they are
 exposed. Research on knowledge compilation mechanisms is useful too, but
 primarily for determining how much and what kinds of practice to assign.
 The Cascade project is one of a small but growing number of efforts aimed
 at providing descriptive theories of knowledge acquisition (e.g., Badre,
 1972; Glidden, 1991; Mayer, 1990; Neves, 1981; Martin & Redmond, 1988;
 Ohlsson, in press; Ohlsson & Rees, 1991; Pirolli & Recker, 1991; Reimann,
 in press; VanLehn, 1990). Because people use many different knowledge
 acquisition methods, we expect these efforts to be complementary rather
 than competitive accounts of cognition, and we look forward to some
 distant future when they can all be unified to provide an encompassing
 model of human knowledge acquisition.
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