Taylor & Francis

Taylor & Francis Group

A Model of the Self-Explanation Effect

Author(s): Kurt VanLehn, Randolph M. Jones and Michelene T. H. Chi
Source: The Journal of the Learning Sciences, Vol. 2, No. 1 (1992), pp. 1-59
Published by: Taylor & Francis, Ltd.

Stable URL: https://www.jstor.org/stable/1466684

Accessed: 20-03-2019 20:55 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Taylor & Francis, Ltd. is collaborating with JSTOR to digitize, preserve and extend access to
The Journal of the Learning Sciences

JSTOR

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

THE JOURNAL OF THE LEARNING SCIENCES, 2(1), 1-59
Copyright © 1992, Lawrence Erlbaum Associates, Inc.

A Model of the Self-Explanation Effect

Kurt VanLehn, Randolph M. Jones,
and Michelene T. H. Chi

Learning Research and Development Center
University of Pittsburgh

Several investigators have taken protocols of students learning sophisticated
skills, such as physics problem solving and LISP coding, by studying examples
and solving problems. These investigations uncovered the self-explanation
effect: Students who explain examples to themselves learn better, make more
accurate self-assessments of their understanding, and use analogies more
economically while solving problems. We describe a computer model, Cas-
cade, that accounts for these findings. Explaining an example causes Cascade
to acquire both domain knowledge and derivational knowledge. Derivational
knowledge is used analogically to control search during problem solving.
Domain knowledge is acquired when the current domain knowledge is
incomplete and causes an impasse. If the impasse can be resolved by applying
an overly general rule, then a specialization of the rule becomes a new domain
rule. Computational experiments indicate that Cascade’s learning mechanisms
are jointly sufficient to reproduce the self-explanation effect, but neither
alone can reproduce it.

If you teach college courses, you have probably been visited by students
who are bright, work hard, and yet get low grades on examinations. They
want to know what they are doing wrong. If you suggest that they study
harder, they ask you, “How?” Feeling slightly sheepish, you roll out the
litany of “good study habits” that your teachers and parents told you: Study
in a well-lit place that is free from distractions, review the chapter for main
ideas both before and after reading it, take good notes and review them, etc.
The students reply, with perhaps some irritation, that they already do that.
They want to know how to study in such a way that they can extract the
information from the textbook and homework problems that you, the

Requests for reprints should be sent to Kurt VanLehn, Learning Research and Development
Center, University of Pittsburgh, 3939 O’Hara Street, Pittsburgh, PA 15260.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

2 VANLEHN, JONES, CHI

teacher, expect them to extract. They know it is possible because their
friends apparently have no trouble extracting the requisite information.
They want to know how they can study as effectively as their friends.
Cognitive science does not yet have a complete answer for these students,
but it has made steady progress toward understanding effective studying
processes. Much research has involved subject areas that involve extensive
problem solving, such as science, mathematics, engineering, and computer
science. In these task domains, studying worked examples appears to play
a key role in effective learning. Several studies have shown that students
attend more to examples than other forms of instruction both in controlled
experiments (LeFevre & Dixon, 1986) and in natural settings (Anderson,
Farrell, & Saurers, 1984; Chi, Bassock, Lewis, Reimann, & Glaser, 1989;
Pirolli & Anderson, 1985; VanLehn, 1986). When students solve problems,
they often refer to examples (Anderson et al., 1984; Chi et al., 1989; Pirolli
& Anderson, 1985), but how much they learn from such analogical problem
solving appears to depend on how well they understand the examples
(Pirolli & Anderson, 1985), which probably depends on how they studied
the examples. Some researchers (Pirolli, 1991; Pirolli & Bielaczyc, 1989;
Reed, Dempster, & Ettinger, 1985; Sweller & Cooper, 1985; Ward &
Sweller, 1990) compared the learning of students who were given worked
example problems with the learning of students who were given the same
problems and had to solve them themselves. It was often found that
examples were similar to problems in that the same factors predicted
transfer but were different from problems in that less training time was
needed to achieve the same level of performance. In several studies
(Charney, Reder, & Kusbit, 1990; Reed et al., 1985; Ward & Sweller, 1990)
examples that varied in the amount of explanation accompanying their
solutions were compared. Less explanation often led to more learning.
Although experiments comparing instructional materials have shed some
light on studying processes, several researchers have used a more direct
paradigm for understanding which studying processes are most effective.
They compared the behaviors of effective and ineffective learners as they
studied the same material. The students who learned more appeared to
study the examples by explaining them to themselves (Chi et al., 1989;
Fergusson-Hessler & de Jong, 1990; Pirolli & Bielaczyc, 1989). For in-
stance, when Chi and VanLehn (1991) analyzed the protocols of effective
and ineffective learners as they studied examples, they found that the good
learners made more comments about the conditions under which specific
actions were advisable, the relationships between actions and goals, the
consequences of actions, and the meanings of mathematical expressions.
This finding does not completely determine the good learners’ studying
process, but it strongly suggests that they were somehow explaining the
example to themselves by filling in the details that the example left out and

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 3

by highlighting the relationships between general pieces of domain knowl-
edge and the specific actions taken in solving the example. This process (or
processes) was named self-explanation by Chi et al. (1989). Bielaczyc and
Recker (1991) showed that students can be taught how to self-explain and
that, when they do, they learn more effectively.

The main goal of the present research was to specify precisely the
processes of self-explanation and to understand why they enhance learning.
Protocols from the Chi et al. (1989) study were reanalyzed, and several
learning processes were uncovered. They were modeled in a machine
learning system, called Cascade. Cascade is able to simulate all the Chi et al.
findings, which suggests that it is a fairly complete model of the studying
processes used by both effective and ineffective learners.

In order to understand which learning processes were responsible for the
self-explanation effect, Cascade was run several times with various combi-
nations of its learning processes turned off. We were surprised to find that
a learning process that acquires search control knowledge is necessary for
successful learning by the other processes, which acquire domain rules and
principles.

In Cascade, the only difference between effective and ineffective learners
is their strategies for studying examples. The good learner chooses to
rederive the example’s solution, whereas the poor learner simply accepts the
solution without trying to check it or regenerate it. As expected, this
strategy difference causes the effective learner to learn more rules while
studying the example than the poor learner. However, we were surprised to
find that it also causes the good learner to learn more rules than the poor
learner while solving problems even though the problem-solving strategies
are the same for both good and poor learners. Thus, studying examples
properly raises the learning rate on subsequent problem solving. This is
consistent with Pirolli and Anderson’s (1985) observation that the way
students study examples seems to influence how much they learn while
solving problems.

A second goal of the present research was to extend current theories of
cognitive skill acquisition. Most theories of skill acquisition propose two
classes of learning mechanisms, which we call knowledge acquisition
methods and knowledge compilation mechanisms. Knowledge acquisition
methods are responsible for acquiring an initial version of the skill from
whatever instructional material is available. Knowledge compilation mech-
anisms are responsible for the slow changes in performance that accompany
practice. Most theorists (e.g., Anderson, 1983; Holland, Holyoak, Nisbett,
& Thagard, 1986; Newell, 1990) propose that there are only a few
knowledge compilation mechanisms, such as chunking, proceduralization,
and strengthening, and that they are part of the human cognitive architec-
ture. That is, they are present in all individuals beyond a certain young age

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

4 VANLEHN, JONES, CHI

and are probably biologically determined. In contrast, knowledge acquisi-
tion methods, such as studying a text effectively or using examples to help
guide one’s problem solving, are believed to be cognitive skills themselves.
They are not part of the cognitive architecture. That is, they are learned and
not innate, although they may be highly automatized if they have been
practiced enough, so subjects may not be aware of their habits for acquiring
knowledge. Different training situations evoke different methods, and
different individuals may use different methods even in the same training
situation. It is impossible to precisely specify all knowledge acquisition
methods, because novel training methods may call forth novel knowledge
acquisition methods and thus add new members to the class. Sometimes it
is not even possible to distinguish one method from another, because
variations among the methods as they are adapted to different situations
make them blend into one another.

Currently, there are much better theories of knowledge compilation
mechanisms than of knowledge acquisition methods. For instance, ACT*
(Anderson, 1983) has two knowledge compilation mechanisms—
proceduralization and strengthening — that model the power law of practice,
several kinds of transfer, the decreasing reliance on training materials
during the second stage, and other practice effects. Soar’s (Newell, 1990)
chunking has also been thoroughly explored. However, ACT* and Soar are
intended to be models of the human cognitive architecture, so according to
theory they should contain only knowledge compilation mechanisms.
Knowledge acquisition methods should be learned. Perhaps because of this
theoretical position, less attention has been paid to simulating human
knowledge acquisition methods. On the other hand, because machine
learning has invented hundreds of knowledge acquisition methods, there is
no lack of hypotheses about what people could be doing to acquire
knowledge. The problem is that we know very little about what they
actually do to acquire knowledge. For instance, we all know that one can
skim an example or one can study it intensely and try to understand it
deeply. What difference does that make, and what exactly is involved in
understanding an example deeply? Would one learn just as much by
skimming the example on its first presentation and studying it intensely only
if necessary for solving a problem encountered later? Despite all the
wonderful methods of machine learning and the well-wrought mechanisms
of knowledge compilation, little is known about human knowledge acqui-
sition methods. Advancing the field’s understanding of this pedagogically
crucial area is the problem addressed by the present research.

Two common criteria for evaluating computational models of skill
acquisition are computational sufficiency and empirical adequacy. A model
is computationally sufficient if it can produce the observed changes in
knowledge using only the kinds of information available to the human

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 5

student. Computational sufficiency is harmed if, for instance, the model’s
programmer intervenes in order to guide the model back onto the right path
when it gets lost. Empirical adequacy is assessed by comparing the model’s
behavior with some kind of human behavior. In this article we compare
Cascade’s behavior with several findings, collectively called the self-
explanation effect. Because these findings in themselves are not con-
straining enough to completely determine the knowledge acquisition
methods students are using, we also report informal analyses of the
protocols that motivated Cascade’s design. Ultimately, we would like to
simulate the protocols on a line-by-line basis, as was done by Newell and
Simon (1972), Ohlsson (1990), VanLehn (1991a), and a few others. Such a
simulation is in progress, and we hope to report the results at a later time.

In addition to computational sufficiency and empirical adequacy, we
believe a good model should be supported by competitive argumentation
(VanLehn, 1990; VanLehn, Brown, & Greeno, 1984). The major hypoth-
eses that define the model should be made explicit, plausible alternatives to
each should be articulated, and the alternatives should be shown to be
empirically inadequate or computationally insufficient. Although this ar-
ticle does not present a complete competitive argument for Cascade, it does
explicate the major hypotheses and provide some empirical evidence for
them.

In the next section, the self-explanation effect is described. A description
of the Cascade system follows. The computational experiments that simu-
late the self-explanation effect are presented next. Thereafter follows a
long, optional section wherein each of the major hypotheses embedded in
Cascade is presented and motivated with protocol data. We conclude with
a discussion of what was discovered by implementing and testing Cascade,
a comparison of Cascade with two other models of the self-explanation
effect, and a discussion of Cascade’s weaknesses and plans for its develop-
ment.

THE SELF-EXPLANATION EFFECT

The task domain used by Chi et al. (1989) was Newtonian particle
dynamics, the first topic in a typical first-year college physics course. Figure
1 shows a typical problem and its solution. Solving such problems generally
involves finding relevant forces and drawing them on a free-body diagram,
projecting the forces onto axes, applying Newton’s Second Law (F = ma;
the net force acting on a body equals its mass times its acceleration), and
solving systems of algebraic equations.

Although the Chi et al. (1989) study had a complex format, the basic
activities of the subjects were as follows:

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

6 VanLEHN, JONES, CHI

Problem: Figure a shows an object of weight W hung by strings. Consider the knot at the
junction of the three strings to be "the body." The body remains at rest under the action of the
three forces shown in figure b. Suppose we are given the magnitude of one of these forces. How
can we find the magnitude of the other forces?

LSS ’

30° 459 F, Fo
30° 450 .
FC
Figure a Figure b
Solution:

Fa, Fb and Fc are all the forces acting on the body. Since the body is unaccelerated,
Fa+Fb+Fc=0.
Choosing the x- and y-axes as shown, we can write this vector equation as three scalar
equations:
Fax+Fbx = 0
Fay+Fby+Fcy = 0
using eqn 5-2. The third scalar equation for the z-axis is simply
Faz = Fbz = Fcz = 0.
That is, the vectors all lie in the x-y plane, so that they have no z-components. From the figure
we see that
Fax = -Fa cos 300 = -0.866Fa,
Fay = Fa sin 30° = 0.500Fa,
and
Fbx = Fb cos 450 = 0.707Fb,
Fby = Fb sin 450 = 0.707Fb.
Also,
Fey = -Fc = -W,
because the string C merely serves to transmit the force on one end to the junction at its other
end. Substituting these results into our original equations, we obtain
-0.866Fa + 0.707Fb = 0
0.500Fa + 0.707Fb - W = 0
If we are given the magnitude of any one of these three forces, we can solve these equations for
the other two. For example, if W=100N, we obtain Fa=73.3N and Fb=89.6N.

FIGURE 1 A physics example.

1. Take pretests.

2. Study each of the first three chapters of the textbook (Halliday &
Resnick, 1981) until a criterion test on the chapter is passed. This
phase was intended to give subjects the prerequisite knowledge needed
for learning classical mechanics.

3. Study the first part of the textbook’s chapter on classical mechanics.
This part introduced the concepts of force, mass, and gravitational
acceleration. It gave the history and experimental evidence for
Newton’s laws. It ended with a five-step procedure for solving

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 7

mechanics problems. Henceforth, this part of the chapter is called the
text to distinguish it from the remainder of the chapter, which
consisted of worked examples and exercise problems.

4. Take a test on the declarative knowledge of the chapter. For instance,
one question asked students to state Newton’s laws in their own words.
Students who failed this test were sent back to Step 3 of the study.

5. Study the textbook’s worked examples while talking aloud. Figure 1 is
an example from the textbook. The protocols collected during this
phase were transcribed and classified to determine, among other
things, how many self-explanations were given by each subject.

6. Solve quantitative problems while talking aloud. Subjects were al-
lowed to refer to the textbook, and they often did. They referred
mostly to the examples and not the text. None referred to the chapter’s
five-step procedure, which is consistent with the findings mentioned
earlier that students prefer worked examples over other forms of
instruction.

7. Take posttests.

On the basis of the scores on quantitative problem solving (Phase 6), Chi et
al. divided their 8 subjects into two groups. The 4 students with the highest
scores were called the Good solvers; the others were called Poor solvers.

Two similar studies have been performed. Pirolli and Bielaczyc (1989)
used a similar design, with LISP coding as the task domain. Fergusson-
Hessler and de Jong (1990) had subjects give protocols as they studied a
manual on applications of principles of electricity and magnetism to the
Aston mass spectrometer. In both studies, subjects were classified as Good
and Poor solvers on the basis of their test scores.

The first main result of the Chi et al. (1989) study was derived by
classifying each of the subjects’ comments during example studying as either
self-explanations or other kinds of comments (e.g., paraphrases, mathe-
matical manipulations, and metacomments). Good solvers uttered a signif-
icantly larger number of self-explanations (15.5 per example) than did the
Poor solvers (2.7 per example). Pirolli and Bielaczyc (1989) corroborated
this finding when they found that their Good solvers made significantly
more domain-related explanations than did their Poor solvers while
studying examples. Fergusson-Hessler and de Jong (1990) found that in the
categories most representative of deep processing, Good solvers had more
than twice as many episodes as the Poor solvers (45% vs. 18%), whereas the
Poor solvers had almost twice as many episodes of superficial study
processes as Good solvers (19% vs. 10%). In short, there is evidence from
all three studies that students who learn more utter more self-explanations
while studying examples.

While studying examples, students often say whether they understood

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

8 VanLEHN, JONES, CHI

what they have just read. Chi et al. (1989) classified such self-monitoring
statements as either positive (e.g., “Okay, that makes sense”) or negative
(e.g., “Wait. How did they get that?”). They found that the Good solvers
were more accurate in their self-monitoring statements in that 53% of their
statements were positive and 46% were negative. The Poor students were
significantly less accurate, saying 85% of the time that they understood
when, on the basis of their problem-solving performance, they obviously
had not. Thus, students who learn more make more accurate self-
monitoring statements during example studying. Fergusson-Hessler and de
Jong (1990) made a similar finding. The statement “Everything is clear”
occurred three times more often in the protocols of Poor solvers than of
Good solvers.

When Chi et al. (1989) analyzed protocols from the subjects’ quantitative
problem solving, they found that both Good and Poor solvers referred to
examples on most problems (75% for Good solvers; 83% for Poor solvers).
However, they found that the Good solvers referred to the examples less
often per problem (2.7 times) and more briefly (reading on average only 1.6
lines per reference) than did the Poor solvers, who referred to the examples
more frequently (6.7 times per problem) and tended to start at the beginning
of the example and read many lines (on average, 13.0 lines per reference).
Thus, students who learn more refer less frequently and more specifically to
examples during analogical problem solving.

To summarize, the Good solvers differed from the Poor solvers in four
major ways:

1. Good solvers uttered more self-explanations during example studying.
2. Their self-monitoring statements during example studying were more
accurate.
. They made fewer references to examples during problem solving.
4. Their references to examples during problem solving were more
targeted.

w

These four findings constitute the self-explanation effect.

THE CASCADE MODEL

Cascade has two basic abilities. It can explain examples and it can solve
problems. These two processes are discussed separately in the following
sections.

Explaining Examples

An example consists of a problem and a solution. Figure 1 shows an
example studied by subjects in the experiments. The solution consists of a

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 9

list of lines. The lines clearly follow from one another, but the reasoning
connecting them is not completely specified. For instance, the example says,
“Fa, Fb and Fc are all the forces acting on the body,” but it does not say why
those are the only forces acting on the body or how they were derived.
When Cascade is simulating a Good solver, it tries to derive each line. When
it is simulating a Poor solver, it does not try to derive lines. This is the key
difference between Good and Poor solvers, according to the Cascade
model.

Deriving a line is a two-stage process. The first stage is to match the line
to equations stored in memory. The example line “Fax = —Fa cos 30°” in
Figure 1 is represented as follows:

projection(force(knot,string__A), axis(knot,x,0)) =
—1 * magnitude(force(knot,string__A)) * apply(cos,30)

The variables, Fax and Fa, have been replaced by their meanings. Because
the comments of Good and Poor solvers indicated that both groups of
subjects figured out the meanings of the variables, Cascade does not model
this process, because it would be the same for both the Good and Poor
solver simulations.

Equations are represented as Prolog rules. The conclusion (to the left of
the :— symbol) is an equation, and the antecedent (following the :—
symbol) contains conditions that must hold for the equation to be applica-
ble. Capitalized symbols are Prolog variables. For instance, the following
rule matches line “Fax = —Fa cos 30°”:

constraint(projection(V,A) =
sign(proj(V,A)) * magnitude(V) * trigfn(proj(V,A))) : —
instance(V,vector),
instance(A,axis),
origin(A,O),
vertex(V,0).

This rule says that if V is a vector, A is an axis, and the origin of the axis
is the vertex of the vector, then the projection of V onto A is the magnitude
of the vector multiplied by a sign and a trigonometric function that depends
on the geometric relationship between the vector and the axis.

Matching the line to the equation pairs four quantities from the equation
with four values from the line (see Table 1). The second stage in the
derivation is to prove that each of the quantities has the value with which it
is paired. In the case of Quantities 1 and 3, this is trivial, because they are
equal. The other two quantity-value assertions are proved by backward

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

10 VANLEHN, JONES, CHI

TABLE 1
Quantities (First Line) Paired With Values
(Second Line) by Matching a Rule to a Line

1. projection(force(knot,string__A),axis(knot,x,0))
projection(force(knot,string__A),axis(knot,x,0))

2. sign(proj(force(knot,string__A),axis(knot,x,0)))
-1

3. magnitude(force(knot,string__A))
magnitude(force(knot,string__A))

4. trigfn(proj(force(knot,string__A), axis(knot,x,0)))
apply(cos,30)

chaining through equations. For instance, to prove the fourth assertion,
Cascade uses the following conditioned equation:

constraint(trigfn(proj(V,A)) =
apply(name(trigfn(proj(V,A))),angle(trigfn(proj(V,A))))) : —
instance(V,vector),
instance(A,axis),
origin(A,O),
vertex(V,0).

The sought quantity, trigfn, matches the quantity on the left side of the
equation. Its value, apply(cos,30), is matched to the right side of the
equation, which sets up two pairings (see Table 2). Cascade recurses to
prove each of these quantity-value assertions. The recursion terminates
when the value of a sought quantity is provided in the problem statement.
For some reasoning, such as the geometric reasoning required for proving
the second quantity-value assertion of Table 2, we care only about the
outcome and not the process, so this kind of reasoning is represented with
tables and ad hoc Prolog code. This kind of reasoning also “terminates” the
recursive reasoning.

As a side effect of deriving a line, Cascade stores the derivation in
memory for later use during analogical problem solving. For each

TABLE 2
Quantities (First Line) Paired With Values
(Second Line) by Applying a Rule

1. name(trigfn(proj(force(knot,string_A), axis(knot,x,0))))
cos

2. angle(trigfn(proj(force(knot,string__A),axis(knot,x,0))))
30

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 11

quantity-value assertion it proves, Cascade stores a triple consisting of the
name of the example, the quantity, and the rule used to derive the quantity’s
value. Storing all the derivational triples is an idealization. Even the best
students cannot recall every step in their derivation of a line. However, if
they need to know which rule was used to derive a certain goal in order to
carry out some kind of analogy, they can probably recover that fact by
examining the line and perhaps even rederiving it. Thus, the information
recorded in Cascade’s triples is available to Good solvers, albeit sometimes
not directly from memory. In the Poor solver simulation, lines are not
derived so no derivational triples are stored.

If Cascade cannot prove a quantity-value assertion, it first tries to
backtrack and find another way to derive the line. When Good solvers reach
an impasse, they often do exactly that, as well as checking to see if they
made any careless mistakes (slips). Because Cascade does not make slips, it
checks only for alternative solution paths. If Cascade is missing some
relevant domain knowledge, then all alternative paths will also fail. It
returns to the original failure impasse and tries to ferret out the missing
knowledge. The main method for constructing missing knowledge is to try
to resolve the impasse by using commonsense physics (e.g., that blocks
sliding down inclined planes do not jump into the air or fall through the
plane’s surface) or overly general rules (e.g., parts have the same property
values as the whole, so the pressure in a part of a container is equal to the
pressure in the whole container). For instance, one subject could not figure
out how to prove one of the aforementioned quantity-value assertions, that
the sign of the projection was negative (Pair 2 in Table 1). First the subject
tried looking for an appropriate explanation in a table of trigonometric
identities. This failed. She then looked up the value of cos(30) in a table of
cosines. This also failed. (Notice that the subject tried multiple methods for
acquiring the missing knowledge, which is just what Cascade does, t0o.)
The following exchange then took place:

S: Hmmm, negative cosine 30, why would they say ahhh, ummm. . . . The,
ohh, okay, maybe it’s just because the A component is; the X component of
force A is negative. So they just. . . . Well okay I’ll, I’ll try that for a while.
Let’s see if that works, ’cause that makes sense.

E: What makes sense?

S: The reason the negative is there is because the X component is in the
negative direction on the x-axis.

The subject produced the correct rule for determining projection signs, but
it is not clear from this protocol how she did so. We believe that she noticed
that the vector was nearest the negative portion of the x-axis, and applied an
overly general rule that says that signs are often carried from one property

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

12 VanLEHN, JONES, CHI

to another during mathematical operations.! Cascade’s representation for
such a rule is as follows:

constraint(sign(P(X,Y)) = sign(Q(X,Y))) : — true.

Matching this equation to the sought quantity yields the following substi-
tutions:

P = proj
X = force(knot,string__A)
Y = axis(knot,x,0)

The variable Q is still unbound, so Cascade’s subgoal is to prove that —1 is
the value of the quantity

proj(force(knot,string__A), axis (knot,x,0))

In English, the goal is to find a property of the projection whose value is a
negative sign. Finding that the nearest half-axis is negative in this situation
achieves the subgoal, achieves the goal, and thus resolves the impasse.

Whenever an overly general rule resolves an impasse, Cascade creates a
specialization of it by instantiating the rule then substituting variables for
problem-specific constants, such as physical objects and numbers. In this
case, it creates the following rule:

constraint(sign(proj(force(K,S), axis(K,x,R))) =
sign(nearest__half__axis(force(K,S), axis(K,x,R)))) : — true.

The variables K, S, and R have been substituted for knot, string__A, and 0,
respectively. The new rule says that the sign of the projection of a force
onto an x-axis is the same as the sign of the half-axis that is nearest that
force.

This rule is added to the domain knowledge tentatively. If Cascade later

'Projection of vectors is reviewed in Chapter 2 of the textbook, so it is possible that this
subject was recalling this rule rather than constructing it. However, four other subjects also
had problems with projections onto negative axes, so the textbook’s review seems to have been
ineffective. Moreover, this particular subject had more problems with mathematics than
others. Given these prior probabilities and the fact that the subject spent several minutes
looking in vain for this rule before producing it, we believe that the subject was not recalling
the rule but was actually constructing it. By the way, in the simulation runs discussed later, all
relevant knowledge that was covered in the textbook was included in the rules given to Cascade
before it started explaining the examples. Because this rule was included as prior knowledge,
this particular impasse and learning described here did not occur. When we fit Cascade’s
behavior to individual subjects, the model of this subject will not be given this rule as prior
knowledge, and Cascade will have to learn it.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 13

succeeds in deriving the line, then the rule is made a permanent part of the
domain knowledge base; otherwise, it is deleted. This is another idealization.
Subjects’ comments make it clear they do not always recall a newly invented
rule, and even if they do, they remain suspicious of it until it has been used
several times (cf. VanLehn, 1991a). In a later version of Cascade, levels of
belief may be added to rules to represent this growth in confidence in
self-invented rules.

This particular method for resolving impasses and learning new rules is
called explanation-based learning of correctness (VanLehn, Ball, &
Kowalski, 1990).

Cascade has a second method for learning new rules by resolving
impasses. When neither domain knowledge nor overly general rules can
prove that a certain quantity has a certain value, Cascade gives up and just
assumes that the example is right in assigning that value to that quantity. It
also builds a rule that sanctions analogies to this specific assumption. For
instance, a line in the example of Figure 1 reads, “Consider the knot at the
junction of the three strings to be ‘the body.” ” Upon reading this, one
subject said, “Why this should be the body? I thought W was the body. OK,
let’s see later.” None of the 8 subjects was able to explain why the knot was
chosen as a body. Indeed, we do not think that there is a proper explanation
for this choice, even with overly general rules. Experts probably have many
highly specific rules that tell them the right choices for common problems.
For unfamiliar problems, experts make a tentative choice, plan a solution,
and change their choice if a solution cannot be planned (Larkin, 1983).
Probably the best that a learner can do in the knot situation is to form a rule
that says, “In problems like this one, choose the knot as the body.” This
appears to be what the subjects did, because when they later tried to solve
problems that also had three strings converging on a knot, they all referred
back to the three-strings example and then chose the knot as the body.

Cascade simulates this behavior with a type of abduction (Pople, 1973)
that produces rules that cause analogies. Normal abduction produces “P(a)”
when given “Q(a)” and “P(a) implies Q(a).” That is, if assuming P(a)
explains why Q(a) holds, then we assume P(a). Cascade’s abduction is
similar, except it produces a generalization of “P(a)” in the form of a rule
which says, “if X is analogous to a, then P(X).” For instance, when Cascade
cannot prove that the only body of problem sx is knot__sx (i.e., that bodies
(sx) = [knot__sx]), it builds the following rule:

constraint(bodies(Problem) = V) : —
current__situation(CurrentSit),
analogical__retrieval(CurrentSit,situation__sx),
analogical__mapping(CurrentSit,situation__sx,Map),
apply__map(Problem,sx,Map),
apply__map(V,[knot__sx],Map).

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

14 VanLEHN, JONES, CHI

This rule says that if an analogy can be built between the current situation
and situation__sx, and the current problem is analogous to sx, then the
current problem’s bodies are analogous to [knot__sx]. This rule can be used
to find bodies for other problems by finding objects corresponding to
knot__sx. This method of learning new rules at impasses is called analogy
abduction, because it abduces analogy-producing rules.

Analogy abduction and explanation-based learning of correctness are just
two of the many methods that subjects use to resolve impasses and acquire
new rules. In a case discussed earlier, a subject looked up information in
trigonometric tables. Had she succeeded, she probably would have built a
new rule. In another case, a subject tested his memory of an algebraic
operation by generating a test problem and solving it. Cascade currently has
just two knowledge acquisition methods because these two seem to be the
most popular in this particular instructional situation.

To summarize, two major kinds of learning occur when Cascade derives
example lines: (a) The derivation itself is stored in the form of triples that
pair sought quantities with the rules used to derive their values. (b) New
rules are created when an impasse is resolved via explanation-based learning
of correctness, analogy abduction, or other yet-to-be modeled methods.

Solving Problems

Overall, problem solving is similar to example explaining. Explanation-
based learning of correctness can occur during both, and derivations are
recorded in memory for both. A minor difference is that analogy abduction
applies only during example solving. It is based on assuming that a specified
quantity has a specified value, but the value part of the pair is only available
during example explaining and not during problem solving.

Solving a problem is most similar to the second stage in deriving an
example line. In that stage, the goal is to prove quantity-value assertions,
and this is done by backward chaining through equations. In problem
solving, the goal is to find a value for a quantity, and this is also done by
backward chaining through equations. For instance, if the goal is to find the
value of

projection(force(knot2,string__1),axis(knot2,x,0)),
then Cascade can use the same equation as before:
constraint(projection(V,A) =
sign(proj(V,A)) * magnitude(V) * trigfn(proj(V,A))) : —

instance(V,vector),
instance(A,axis),

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 15

origin(A,O),
vertex(V,0).

It matches the left side of the equation to the sought quantity and sets the
quantities on the right side as subgoals. When it has found values for each
of the subgoals, it multiplies them together and returns the result as the
value of the projection.

Usually there are several rules whose equations match the currently
sought quantity. Cascade must choose one. This is a search control
decision; if Cascade’s choice fails to yield a solution to the problem, it can
back up and try a different rule. Nonetheless, it should try the rule most
likely to succeed first. Cascade’s main heuristic for making such choices is
to select the rule that was used to find a similar quantity in an analogous
example. To implement this heuristic, Cascade first retrieves an example
whose diagram is similar to the current problem’s diagram. (This type of
analogical retrieval is somewhat idiosyncratic to the materials used in the
Chi et al. (1989) study, so Cascade models it with a table look-up rather
than an actual visual indexing process.) It then forms an analogical
mapping that pairs objects in the problem with objects in the example.
Using this mapping, it converts its sought quantity, say,

projection(force(knot2,string__1),axis(knot2,x,0)),
into a quantity that uses the example’s objects, say,
projection(force(knot,string__A),axis(knot,x,0)).

Cascade looks this quantity up in the triples that encode the example’s
derivations and determines what rule was used to find this quantity’s value.
This is the rule that it will try first to achieve the problem’s goal. This
process is called analogical search control.

Usually, there are many times in the course of solving a problem when
multiple rules match the sought quantity and choices must be made.
Cascade does analogical retrieval and mapping only for the first one. It
stores the map and reuses it for all the others. This is consistent with
subjects’ behavior. If they have not committed the example to memory,
then they flip through textbook pages until they find the right example and
reread it to refresh their memory for its derivation. This usually occurs only
on the first analogical reference during an attempt to solve a problem and
not during other analogical references during the solving of that problem.
Even if they have committed the example to memory, when they start a new
problem they seem to spend a little bit longer on their first analogical
reference to the example than they do on the others. Perhaps they are
forming a mapping, just as Cascade does on its first encounter with a new

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

16 VANLEHN, JONES, CHI

example-problem pair. As mentioned earlier, the current version of Cas-
cade is an idealization, in that it assumes that the example and its complete
derivation are always held in memory.

As Chi et al. (1989) noted, the analogical references of the Poor solvers
were qualitatively different from those of the Good solvers. The Poor
solvers often started at the beginning of an example and read the whole
thing, whereas the Good solvers started in the middle and read only a line
or two. The latter behavior is consistent with analogical search control,
because most of its references occur after the initial mapping is made, so the
major purpose in rereading the example is to refresh one’s memory of a
specific line whose derivation is likely to contain the sought quantity.
However, analogical search control is not consistent with constantly
rereading the solutions from top to bottom, so the Poor solvers’ behavior
seems to have been a different kind of analogy. Their comments made it
clear that they were hunting for a line that contained a quantity similar to
the currently sought quantity. They did not seem to care how the line was
derived. For instance, as long as it contained a tension and they were
seeking a tension, then they were happy to use it just as if it were a valid
equation from the domain. We implemented this kind of analogy in
Cascade and named it zransformational analogy, after a type of analogy
studied by Carbonell (1983, 1986) that also ignores derivations. Cascade
uses transformational analogy whenever an impasse cannot be resolved by
explanation-based learning of correctness.

In principle, we could have transformational analogy learn new (prob-
ably incorrect) rules, just as Carbonell did. However, the subjects often
commented that they hated hunting randomly for equations, so we doubt
that they would believe that they had discovered a new rule of physics even
if they did resolve an impasse using transformational analogy. Thus,
Cascade does not create new rules when it uses transformational analogy.

Summary

Table 3 presents the main loop of the Cascade interpreter. On the first pass,
Cascade uses only domain knowledge and not the overly general rules of
explanation-based learning of correctness. If it fails to find a solution path,
it makes a second pass using the overly general rules as well as the domain
rules. If this fails, then a third pass is made and impasses are settled by
analogy abduction. The “create” statements (e.g., Step 1g) indicate storage
of new information in long-term memory. All such additions to the
knowledge base are undone if backtracking goes through them. Thus, only
the information created along the solution path survives.

The current version of Cascade does not adequately model the difference
between retrieving information from memory and retrieving it from the

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

TABLE 3
The Main Loop of Cascade’s Rule Interpreter

In problem P, to find a value V for quantity G or to show that V is the value of quantity
G, try these methods in order until one succeeds:

1. Analogical search control.
Do the following five steps in order, failing if any one fails and the failure can’t be
handled:

a.

o

TwE oo

Retrieve an example E that is similar to P.
If retrieval fails, then
Sflip pages looking for an example with a diagram that is similar to P’s diagram.

. Retrieve a mapping between E and P.

If retrieval fails, then
reread problem statements of E and P, and
create a mapping.
Using the mapping, substitute terms in G to form a target goal T.

. Retrieve a triple (E T R), where R is bound by retrieval to a rule.

If retrieval fails, then
reread lines of E’s solution to stimulate recall.
If rereading lines stimulates only partial recall, then
redo the derivation of the line that stimulated partial recall, and
retrieve a triple from the new derivation.
If rereading lines fails to stimulate recall, then
redo the whole derivation, and
retrieve a triple from the new derivation.
Show that R’s conditions are met.
Apply R’s equation to G and V.

. Create a triple (P G R).
. Return whatever Step f returned.

2. Regular rule selection and application.
Do the following steps in order, failing if any one fails and the failure cannot be
handled:

a.

Retrieve a domain rule (or any rule if this is not pass 1)
whose equation contains a quantity unifying with G and
whose condition is met by the current situation. Call the rule R.

. Plant a backup point so that a different rule can be

retrieved if R leads to failure.
Apply Rto G and V.

. If R is an overly general rule, then

create a specific version of the rule by instantiating R
and substituting variables for problem-specific constants.
Call this new rule R and
mark it as a domain rule of P’s task domain.
Create a triple (P G R).
Return whatever Step ¢ returned.

(continued)

17

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

18 VANLEHN, JONES, CHI

TABLE 3 (Continued)

3. Transformational analogy.

If a problem is being solved, then

do the following steps in order, failing if any one fails and the failure cannot be

handled:

a. Retrieve an example (as in Step la).

b. Retrieve a map (as in Step 1b).

c. Create a target goal T via mapping G (as in Step Ic).

d. Retrieve a line of the example that contains T.

If retrieval fails, then reread each line to see if it contains T.

e. Substitute terms in the line via the map to put it in terms of P.
Apply the line’s equation to G.
g. Return whatever Step f returned.

fadd

4. Analogy abduction.
If this is the third pass, and
an example is being explained and a value V for G is known, then
do the following steps in order, failing if any one fails and the failure cannot be
handled:
a. Create an analogy rule R (see text), and
b. Mark it as a domain rule of P’s task domain, and
c. Create a triple (P G R).
d. Return success.

5. Impasse: No rules apply to G.
If there are backup points, then resume one,
else if this is Pass 1, then start over with Pass 2,
else if this is Pass 2 and an example is being explained, then start over with Pass 3,
else fail utterly. This problem/example cannot be solved/explained.

To apply an equation E to a quantity G when the value is unknown:
Let S be all quantities in E except G.

Recurse to find the values of each quantity in S.

Substitute values for quantities in E.

Solve E for G.

Return the result as G’s value.

“n AW -

To apply an equation E to a quantity G when the value V is given:

1. Solve E for G, obtaining expression X.

2. Match X to V, obtaining a set S of quantity-value pairs.

3. Recurse to show that each quantity in S has the value with which it is paired.
4. Return success.

external world (e.g., the worksheet with the problem written on it). It is not
difficult to add such a distinction, and Table 3 shows the main loop as if the
distinction were already embedded in Cascade. The added code, shown in
italics, specifies strategies for retrieving information from the external
world whenever a memory retrieval fails. For instance, Step 1a claims that
subjects attempt to retrieve an analogous example from memory and, if that

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 19

fails, to flip through pages of the textbook looking for an example whose
diagram matches the problem’s diagram. At this point in Cascade’s
development, we do not want to defend any particular memory model. One
has been included here in order to clarify the relationship between Cascade’s
activities and the subjects’ activities.

MODELING THE SELF-EXPLANATION EFFECT
WITH CASCADE

A simple hypothesis for explaining the difference between Good and Poor
solvers is that Good solvers chose to explain more example lines than did
Poor solvers. This in turn caused more learning and hence better perfor-
mance and all the other differences between the Good and Poor solvers.
This hypothesis is nearly vacuous unless one specifies exactly how ex-
plaining examples causes learning. Cascade is such a specification. In this
section we report a test of the conjoined hypotheses (a) that Cascade models
learning in the Chi et al. (1989) study and (b) that the root cause of the
self-explanation effect is that Good solvers explained more example lines
than did Poor solvers.

Several simulation runs were made, varying the number of example lines
explained and turning on and off various learning mechanisms. All these
simulations began with the same initial knowledge state. Before the runs are
described, the initial knowledge state is described along with the method
used to determine it.

Initial Knowledge

Cascade represents knowledge in many ways. Much of the knowledge is
provided initially rather than learned. The algebraic knowledge that is built
into the interpreter is, of course, provided initially. Commonsense knowl-
edge about classes of objects is provided initially as Prolog code. Initial
knowledge of physics was encoded as 29 rules (conditioned equations) that
were derived as follows. First, an extensive task analysis and simulation
were conducted with the aid of Bernadette Kowalski and William Ball.
Starting with the task analyses of Bundy, Byrd, Luger, Mellish, and Palmer
(1979), Larkin (1981, 1983), and Novak and Araya (1980), a set of rules and
a representation of physics problems were developed that were simple and
yet sufficient for solving all but 2 of the 25 problems in the Chi et al. (1989)
study (solving the 2 problems would have required a type of mathematical
reasoning that we did not bother to implement). During this time, extensive
informal analyses of the Chi et al. protocols were conducted in an effort to
align the proposed knowledge representations with the subjects’ comments.
The resulting target knowledge base contained 62 physics rules. Next, two

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

20 VaNLEHN, JONES, CHI

people who were not involved in developing the target knowledge base were
asked to judge each rule and determine whether it was mentioned anywhere
in the text (i.e., the textbook before the examples). There was 95%
agreement between the judges. Disagreements were settled by a third judge.
Of the 62 rules in the target knowledge base, only 29 (47%) were judged to
be present in the text. These rules were given to Cascade as its initial
knowledge of physics for the runs that simulated the self-explanation effect.

The remaining Cascade knowledge consists of 44 rules used by explanation-
based learning of correctness (EBLC). There are three kinds, which will be
described in turn (see Table 4).

Eleven rules are overgeneralizations of common patterns of scientific
inference. For instance, Rule 1 says that the property of a whole often has
the same value as the property of a part. Cascade used this rule to learn a
new domain rule that says that the pressure in a whole container is equal to
the pressure in one of its parts.

There are 28 rules that encode knowledge about commonsense physics
(not shown in Table 4). Most of these rules describe commonsense forces
(i.e., pushes and pulls). Some of these rules, for instance, state that a
compressed spring pushes and a stretched spring pulls.

There are six overly general rules that link commonsense physics to proper
physics. EBLC uses these rules to relabel commonsense quantities as proper
physics quantities. Because only a specialized version of the relabeling rule
is kept, Cascade converts commonsense quantities to formal physics quan-
tities one at a time. It does not learn the sweeping (and incorrect) general-
ization that all commonsense quantities are also formal physics quantities.
In the process of relabeling commonsense concepts, EBLC also gives them
a more mathematical formulation. For instance, when a commonsense force
is turned into a formal physics force, EBLC gives it explicit vectorial prop-
erties, namely, magnitude and direction. This approach to learning scientific
concepts seems plausible, considering that many scientific concepts, such as
force or acceleration, are modifications of lay concepts.?

2There is a whole literature on the development of scientific concepts (for a recent
discussion, see Chi, in press). Some theorists (e.g., Carey, 1985) believe that acquisition of
scientific concepts like force require a complete restructuring of the subject’s belief systems,
similar to the Kuhnian paradigm shifts that supposedly accompanied the historical develop-
ment of such concepts. Other theorists (e.g., di Sessa, 1988) believe that acquisition of
scientific concepts results from gradual modification of naive concepts. Cascade shows that the
gradual-acquisition account is computationally sufficient, at least for physics concepts such as
force and acceleration, provided that the learner has already distinguished between formal and
naive physics and has erected an equation-based representation for formal physics. According
to Chi, seeing forces, accelerations, etc. as formal quantities rather than substances possessed
by objects is the crucial step that lays the foundation on which gradual acquisition
mechanisms, such as Cascade’s, can build.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 21

TABLE 4
Rules Used by Explanation-based Learning of Correctness

Overly general rules about properties and values

1.

10.

11.

If P is a part of W, then the value of a property for W is the value of that property
for P.

If P is a part of W, then the value of a property for P is the value of that property
for W.

If P1 and P2 are parts of W, then the value of a property for W is the value of a
property for P1 and P2.

If P1 and P2 are parts of W, then the value of a property for P1 and P2 is the value
of a property for W.

If P is a part of W, then the value of a property for W is the perpendicular to the
value of that property for P.

If P is a part of W, then the value of a property for W is the opposite of the value
of that property for P.

If a structural predicate relates object A to object B, then there is a force from B on
A.

If a structural predicate relates object B to object A, then there is a force from B on
A.

If the value for a property P1 of object X is equal to the value for that property of
object Y, and property P2 can be derived from P1, then the value for P2 of object
X is equal to the value for that property of object Y.

If the value for a property P1 of object X is equal to the value for that property of
object Y, and property P2 is derivable from P1, then the value for P2 of object Y is
equal to the value for that property of object X.

A property P of an object is the magnitude of a force of type P from the object on
a body.

Overly general rules that link common sense with physics

39.
40.

41.
42.

43.

If F is a commonsense force, then it is a physics force.

If a commonsense force F has a property P, then the analogous physics force has the
same property.

If A is a commonsense acceleration, then it is a physics acceleration.

If a commonsense acceleration A has a property P, then the analogous physics
acceleration has the same property.

If X is a set of commonsense axes, then it is a set of physics axes.

If F is a force from S on B, then the sense of the force depends on whether it
“pushes” or “pulls” on B.

The Simulation Runs

Run 1 was intended to simulate a very good student who explains every line
of every example. Cascade first explained the three examples in the study,
then it solved the 23 problems (the 2 problems that are not solvable by the
target knowledge were excluded). It was able to correctly solve all the
problems. It acquired 23 rules: 8 while explaining examples and 15 while
solving problems. Table 5 lists the rules acquired. The number of times each
was used appears in square brackets. All these rules were acquired by EBLC

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

22 VaNLEHN, JONES, CHI

TABLE 5
Rules Learned by Cascade During Run 1

—

If X slides on Y, then there is a normal force from Y on X. [9]

2. If there is a normal force from Y on X, then the sense of the force is the relative
position of X with respect to Y. [9]

3. If there is a normal force from Y on X, then the incline of the force is perpendicular
to the incline of Y. [9]

4. The axes can be chosen from any two perpendicular vectors in the free-body diagram.

121

If X slides down Y, then the sense of the acceleration of X is down. [9]

If X slides down Y, then the incline of the acceleration of X is the incline of Y. [5]

7. If the magnitude of the displacement of X is equal to the magnitude of the
displacement of Y, then the magnitude of the acceleration of X is equal to the
magnitude of the acceleration of Y. [6]

8. If X floats in Y, then there is a buoyant force on X due to Y. [1]

9. If there is a buoyant force on X due to Y, then the incline of the force is 90°. [1]

10. If there is a buoyant force on X due to Y, then the sense of the force is up.

11. The “tension of X” means the magnitude of the tension force on something due to X.
(1]

12. If Y is a pusher and tied to X, then there is a compression force on X due to Y. [1]

13. If there is a compression force on X due to Y, then the incline of the force is the
incline of Y. [1]

14. If there is a compression force on X due to Y, then the sense of the force is the
relative position of X with respect to Y. [1]

15. If X is an object and Y supports X, then there is a pressure force on X due to Y. [1]

16. If there is a pressure force on X due to Y, then the incline of the force is the incline of
Y. [1]

17. If there is a pressure force on X due to Y, then the sense of the force is the relative
position of X with respect to Y. [1]

18. If Y is a piece of X, then the pressure of X is equal to the pressure of Y. [1]

19. The “pressure of X” means the magnitude of the pressure force on something due to
X. 1]

20. If an object X moves through the air Y, then there is a friction force on X due to Y.
(1

21. If there is a friction force on X due to Y, then the incline of the force is the incline of
the velocity of X. [2]

22. If there is a friction force on X due to Y, then the sense of the force is opposite to the
sense of the velocity of X. [2]

23. If the current situation is analogous to situation__sx, and the current problem is

analogous to sx, then the bodies of the current problem are analogous to [knot__sx].

31

 »

except Rule 23, which was acquired by analogy abduction. The new rules
are correct physics knowledge, allowing for the simplicity of the knowledge
representation. Moreover, they seem to have the right degree of generality
in that none were applied incorrectly and none were inapplicable when they
should have been. However, some of the rules dealt with situations that
occurred only once in this problem set, so they were never used after their
acquisition.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 23

Run 2 was intended to simulate a very poor student who explains none of
the example lines. To simulate a student who merely reads an example
without explaining it, the lines from the three examples were made available
for transformational analogy but were not explained. Thus, there was no
opportunity for EBLC and analogy abduction to learn new rules and there
were no derivations left behind to act as search control for later problem
solving. Cascade was given the same 23 problems it was given in Run 1. It
correctly solved 9 problems. As it solved these problems, it acquired 3
correct rules via EBLC. On 6 problems, Cascade found an incorrect
solution, during which time no rules were acquired. On the remaining 8
problems, either Cascade failed to find a solution or its search went on for
so long that it was cut off after 20 min. Although EBLC was used
extensively, the rules produced were always incorrect. On the assumption
that a poor student would not believe a rule unless it led to a correct
solution, rules acquired during failed solution attempts were deleted.

Run 3 was intended to separate the benefits of EBLC from the benefits of
analogy. Cascade studied the examples as in Run 1, learning the same 8
rules as in Run 1. During problem solving, both analogical search control
and transformational analogy were disabled. As expected, it answered only
19 of 23 problems correctly. A large interaction was found with EBLC.
When analogy was not used during problem solving, EBLC learned 10
rules, only 6 of which were correct. Moreover, 3 of the 6 rules were the same
3 that it had learned on Run 2. Thus, of the 15 rules learned during problem
solving on Run 1, 3 could be learned without benefit of the rules learned
during example studying, 3 others required the example studying rules but
could be learned without analogy, and the remaining 9 required both
analogy and the example-studying rules. This finding makes sense. Analog-
ical search control and, to a less extent, transformational analogy influence
the exact location of impasses, which in turn determine the rules learned by
EBLC. Their influence is strong enough that analogy is necessary for EBLC
to learn 9 of the 15 rules (60%) acquired during Run 1’s problem solving.

In order to determine whether this effect was due to transformational
analogy or analogical search control, a fourth run was conducted that was
similar to Run 3 except that only analogical search control was disabled.
Cascade still used transformational analogy. This allowed it to get 2 more
problems correct, raising its score to 21 of 23 problems. More important,
EBLC acquired the same six correct rules as in Run 3. The fact that no further
correct rules were acquired implies that it was analogical search control and
not transformational analogy that helped EBLC during Run 1. Thus, it
appears that analogical search control (or some other kind of search control)
is necessary during problem solving if EBLC is to learn successfully.

Table 6 summarizes the results of the four runs. The processes turned on
during each run are listed beside the run’s name.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

24 VANLEHN, JONES, CHI

TABLE 6
Results of the Simulation Run

Run 1: Self-explanation, analogical search control, transformational analogy
8 Rules learned during example studying
15 Rules learned during problem solving

23 Total rules learned

23 Problems solved correctly
Run 2: Analogical search control, transformational analogy
Rules learned during example studying
Rules learned during problem solving (all correct)

Total rules learned
Problems solved correctly
Run 3: Self-explanation
Rules learned during example studying (same rules as Run 1)
10 Rules learned during problem solving
3 Same as rules learned during Run 2
3 Other correct rules
4 Incorrect rules

oWl wo

18 Total rules learned
19 Problems solved correctly
Run 4: Self-explanation, transformational analogy
Rules learned during example studying (same rules as Run 1)
9 Rules learned during problem solving
6 Same as correct rules learned during Run 3
3 Incorrect rules

o]

17 Total rules learned
21 Problems solved correctly

Explaining the Self-Explanation Findings

Cascade was expected to be able to explain the four differences between
Good and Poor solvers observed by Chi et al. (1989). Assuming that the
number of self-explanatory utterances was directly proportional to the
number of lines explained during example studying, the job facing Cascade
was to demonstrate that explaining more lines caused better scores on
problem solving (Finding 1), more accurate self-monitoring (Finding 2), less
frequent reference to the examples (Finding 3), and more specific reference
to the examples (Finding 4).

The contrast between Runs 1 and 2 indicates that Cascade was able to
reproduce the positive correlation between the number of example lines
explained and the number of problems solved correctly. On Run 1, it
explained all the example lines and got all 23 problems correct; on Run 2,
it explained none of the example lines and got 9 of the problems correct.
Knowing the operation of Cascade, it is clear that having it explain an

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 25

intermediate number of lines would cause it to correctly answer an
intermediate number of problems. So the two extreme points (Runs 1 and
2) plus Cascade’s deterministic design are sufficient to demonstrate the main
correlation of the self-explanation effect.

Several mechanisms contributed to this result, and each is examined in
turn. First, when more lines are explained, Cascade is more likely to
stumble across a gap in its domain knowledge. Such missing knowledge
causes impasses, which causes EBLC and analogy abduction to construct
new rules during example explaining. Of the 20 rules that were learned
during Run 1 and not Run 2, 8 (40%) were learned while explaining
examples. As the domain knowledge becomes more complete, performance
on problem solving rises. Thus, the more self-explanation, the more rules
learned during example studying, and hence the more improvement in
problem solving.

The acquisition of rules during example studying helps produce contexts
that allow EBLC to learn more rules during problem solving even without
the aid of analogical search control. For instance, one rule learned during
example studying selects a body for resolving forces about. This rule is
necessary for traversing the correct solution path for some problems, which
in turn is necessary for acquiring certain rules. Learning this rule during
example studying allows EBLC to learn new rules during problem solving,
and some of these new rules can be learned even without the guidance of
analogical search control. Of the 20 rules, Run 3 shows that 3 (15%) were
acquired in this fashion. These new rules also contributed to the improve-
ment in problem solving.

Analogical search control raises the test scores both directly and indi-
rectly. When more lines are explained, more derivational triples are stored
and available for analogical search control. Because analogical search
control prevents Cascade from going down some dead ends, it directly
raises the score during problem solving. There is an indirect effect as well.
Analogical search control causes impasses to occur at places where knowl-
edge is truly missing, rather than at local dead ends in the search space, so
EBLC is more often applied to appropriate impasses and thus more often
generates correct domain rules. The remaining 9 of the 20 rules (45%)
require analogical search control for their acquisition.

There is a simple explanation for the finding that Good solvers made
more accurate self-monitoring statements. We assume that negative self-
monitoring statements (e.g., “I don’t understand that”) correspond to
impasses and positive self-monitoring statements (e.g., “Ok, got that”)
occur with some probability during any nonimpasse situation. When more
example lines are explained, there are more impasses, and hence the
proportion of negative self-monitoring statements will be higher. In the
extreme case of Run 2, in which no example lines were explained, all the

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

26 VaNLEHN, JONES, CHI

self-monitoring statements during example processing would be positive,
which is not far off from Chi et al.’s (1989) observation that 85% of the
Poor solver’s self-monitoring statements were positive.

Chi et al. (1989) observed that during problem solving, the Good solvers
made fewer references to the examples than did the Poor solvers (2.7 vs. 6.7
references per problem). These were mostly physical references, wherein the
solver turned to the example and reread part of it. Currently, Cascade does
not distinguish memory references from physical references. However, it
does have two different kinds of analogical references. Analogical search
control searches for a sought quantity in the derivation of a problem.
Transformational analogy reads consecutive lines in an example, looking
for one that contains the sought quantity. Suppose we assume that all of the
transformational analogy references are physical and that a small propor-
tion, say P, of the references due to analogical search control are physical.
On the Good solver run, Cascade made 551 references for analogical search
control and 40 for transformational analogy. Using the preceding assump-
tion, Cascade would make S51P + 40 physical references. On the Poor
solver run, Cascade could not use analogical search control because no
derivations were available from explaining examples. However, it made 91
references for transformational analogy. If P < .092, then 551P + 40 < 91
and Cascade would correctly predict that the Good solvers make fewer
physical references than Poor solvers.

Chi et al. (1989) observed that the Good solvers read fewer lines when
they referred to examples than did the Poor solvers (1.6 vs. 13.0 lines per
reference). Cascade can model this effect, although an assumption is again
needed about the percentage of analogical search control references that are
physical. Suppose we assume that P of the analogical search control
references are physical and that a physical reference by analogical search
control reads only one line. On the Good solver run, Cascade read 340 lines
during transformational analogy and 551*P lines during analogical search
control, for a total of (551P + 340) / (551P + 40) lines per reference. On
the Poor solver run, Cascade read 642 lines, for 692 / 71 = 7.1 lines per
reference. If P > .017 then (551P + 340) / (551P + 40) < 7.1 and Cascade
correctly predicts that the Good solvers read fewer lines per reference than
the Poor solvers.

Notice that the lower bound (.017) on P does not have to be beneath the
upper bound (.092). If the P had to be above, say, .1 in order to get the
lines-per-reference finding correct and below .05 in order to get the
reference frequency finding correct, then Cascade could not model both
these findings. Thus, these findings jointly have the power to test Cascade,
and it passed their test.

Figure 2 summarizes the preceding arguments. It shows the major

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 27

nobservabl servabl
More example More explanatory
lines > statements
explained
More impasses More accurate
while studying self-monitoring
examples statements
More EBLC while More domain Better EBLC More Better problem
studying g rules from [gylduring problem [g domain solving
examples examples solving rules
) y
More \ More / Fewer analogical
derivational analogical » references
triples \search control
Less transformational Fewer lines read
analogy during per analogical
problem solving reference

FIGURE 2 Causes of the self-explanation effect. EBLC = explanation-based
learning of correctness.

processes and effects in the Cascade model and how they account for the
self-explanation correlations.

Testing Cascade

Because Cascade was built to simulate the self-explanation effect, it
probably seems unsurprising that it succeeded. In this section, we argue that
it should be surprising because Cascade could easily have failed to simulate
the study’s findings.

The hardest test to pass was to get Cascade to learn as much as the Good
solvers learned. One subject got all the problems right, so it is likely that she
learned all 23 to-be-learned rules. To get Cascade to learn as much required
overcoming two hurdles. The first was to get EBLC to occur on the right
impasses. This is not so hard to achieve during example studying, but it is
very hard to achieve during problem solving. We were surprised and
relieved to see that analogical search control sufficed. The second hurdle
was to supply overly general rules that created the right sort of domain rules
when they were specialized. The new rules must neither be too specific nor
too general. We were surprised to find that appropriate transfer was

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

28 VaNLEHN, JONES, CHI

obtained with an obvious generalization heuristic: Instantiate the rule then
substitute variables for constants that are specific to problems.

The next hardest test to pass was to get Cascade to learn as little as the
Poor solvers did. Two thirds of the to-be-learned rules occurred in the
problems. The Poor solvers worked just as hard as the Good solvers on
solving problems, yet they did not seem to learn as much during problem
solving. Why do two sets of students learn different amounts from the same
training material? To put it in terms of the Cascade model, the Poor solver
simulation reaches even more impasses than the Good solver simulation
during problem solving, so why does it not learn more than the Good solver
simulation?

In fact, the Poor solver learned lots of rules during problem solving, but
most of them were deleted because the Poor solver failed to answer most
problems. The Poor solver simulation spent most of its time floundering
because it lacked key rules that were acquired by the Good solver during
example studying and because it lacked analogical search control. As it
floundered about, it reached many impasses, but they were not the right
impasse in that the rules learned at these impasses were not correct.
Moreover, resolving these impasses let the Poor solver continue along a
garden path that never terminated in a solution. When the Poor solver
finally quit (actually, runs were halted by the experimenter after 20 min),
the rules it learned were deleted. This behavior is consistent with a
preliminary analysis by Chi, VanLehn, and Reiner (1988), who analyzed the
protocols of a Good solver and a Poor solver as they solved the same
problem. The Poor solver’s protocol was divided into 77 episodes, and 30 of
these resulted in impasses. (An impasse was identified as an outcome of an
episode whenever the student believed that the next step that should have
been executed could not be performed. Some 98% of the impasses were
identified by explicit statements such as “I don’t know what to do with the
angle” or “So that doesn’t work either”). Many of these impasses seemed to
result in acquiring incorrect beliefs. In contrast, the protocol of the Good
solvers was divided into 31 episodes, only 7 of which resulted in impasses.
In 6 of these, the Good solver seemed to learn a correct piece of knowledge.
This preliminary analysis indicates that the Poor solvers have proportion-
ally more impasses (39%) than do the Good solvers (23%) while problem
solving and that the resulting knowledge is more often incorrect. This is just
what Cascade does, too.

The third test to pass was to get Cascade to simulate findings on
analogical reference. Because Cascade lacks a model of memory, only
partial success can be claimed here. However, the calculations in the Testing
Cascade subsection show that it had a chance of failing the test, but
succeeded nonetheless.

Although Cascade passed these tests, it is clear that the amount of testing

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 29

was small relative to the number of assumptions that underlie Cascade’s
design. It is not at all clear from these tests whether all the assumptions are
necessary. In the next section we delineate the major hypotheses upon which
Cascade is built and try to give empirical support to each one. Whenever
possible, Cascade’s hypotheses are compared with alternative hypotheses.
Thus, the next section forms a partial competitive argument for Cascade.
Although readers can skip it and go directly to the article’s final section, it
reveals much more of the model and its empirical support than any of the
material presented so far.

MAJOR HYPOTHESES

The major hypotheses that together constitute our account for the self-
explanation effect also function as design principles for the implementation
of Cascade. Thus, in this section we have the dual task of introducing the
major assumptions about cognition that underlie the Cascade’s design as
well as arguing on the basis of the protocol data that these assumptions are
reasonable ones to make for this study. Unfortunately, many of the
hypotheses that could be supported with quantitative protocol analysis have
not been. We are frequently reduced to making statements like “There are
many cases of such-and-such” or “No subject said such-and-such.” Such
statements should be supported by coding the protocols and counting the
number of codes. Because there are about 3,000 pages of protocol, we have
done this in only a few cases and relied on our memory of the protocols for
the others. The memory-based statements should be understood as dis-
closing our motivations for choosing the hypotheses rather than providing
solid empirical warrants for them. So far, the major formal empirical
support for the hypotheses comes from the demonstration that Cascade can
model the self-explanation effect findings, although this too is not as
constraining as one would ideally like. (The final section of this article
presents plans for further testing.)

This section has one subsection for each Cascade hypothesis. The first
subsection introduces and justifies the hypothesis that the self-explanation
effect is due to knowledge acquisition methods that occur during both
example explaining and problem solving. The next subsection argues that
the acquired knowledge is small relative to the size of the problems being
solved. That is, the students learn rules rather than cases. This opens two
issues, which are addressed in the subsequent subsections. First, how do
students detect when a rule is missing and needs to be learned? Second,
what methods are used to acquire the new rule? The last few subsections
consider important details about the representation of rules and the
explanation processes used by Good and Poor solvers.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

30 VanLEHN, JONES, CHI

Hypothesized Sources of the Self-Explanation
Effect

Cascade is based on the hypothesis that the self-explanation effect is caused
by knowledge acquisition that occurs as the students explain examples and
solve problems. Let us introduce this hypothesis by first examining com-
peting hypotheses.

A plausible hypothesis is that the two groups of students accumulated
different knowledge of physics just before studying the examples. This
difference could be due to either reading the text of the chapter more
carefully or having knowledge of physics. The students who had more prior
knowledge solved more problems correctly and thus were classified as Good
solvers. Under this prior knowledge hypothesis, all subjects try to explain
the text and the example lines, but those who have more prior knowledge
are better able to explain the example and so produce more self-
explanations (Finding 1 in the earlier list). Moreover, because they produce
more derivations during example processing, they use fewer references
(Finding 3) and more specific references (Finding 4) during analogical
problem solving. Thus, the prior knowledge hypothesis is consistent with
three of the four findings.

There are, however, three sets of evidence against the prior knowledge
hypothesis.

1. The prior knowledge hypothesis predicts that Poor solvers would utter
more negative self-monitoring statements because they more often fail to
explain a line. In fact, they uttered fewer negative self-monitoring state-
ments (Finding 2).

2. After reading the text of the target chapter, the students in the Chi et
al. (1989) study took a test on their knowledge of Newton’s laws (Phase 4 in
the earlier description). The mean scores of the Good and Poor solvers on
this test were exactly the same. Although affirming the null hypothesis with
so few subjects is risky, taking the results at face value suggests that both
groups of students had roughly the same prior knowledge.

3. Chi and VanLehn (1991) conducted a finer grained analysis of all the
self-explanations in the protocols, reducing them to a set of 173 distinct
propositions. For each proposition, they attempted to determine whether it
was inferred from (a) the example line, (b) commonsense knowledge, (c)
knowledge acquired from previous example lines, or (d) the text. If the
Good solvers had more prior knowledge at the time they began studying the
examples, more of their propositions would be encoded as coming from the
text. However, the proportion of text sources (Category d) was the same for
both Good and Poor students, which is inconsistent with the prior
knowledge hypothesis.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 31

Although it is unlikely that all students had exactly the same prior
knowledge, the aforementioned difficulties indicate that variations in prior
knowledge cannot be the sole source of the self-explanation effect. There
must have been some kind of learning going on.

Because the subjects were explaining examples, a plausible type of
learning is explanation-based learning (EBL; Mitchell, Keller, & Kedar-
Cabelli, 1986). Like proceduralization (Anderson, 1983) and chunking
(Newell, 1990), EBL is a kind of knowledge compilation, in that all the
knowledge is assumed to be present in some form before the learning
begins. Learning consists of making the knowledge more efficiently usable.
However, the hypothesis that self-explanation is caused by knowledge
compilation has four difficulties.

1. When the subjects took an untimed test on Newton’s laws after
reading the text (Phase 4), their mean score was only 5.5 out of a possible
12. This suggests that students did not know much physics after studying
the text. After studying the examples and solving the problems, the Good
solvers’ mean score increased to 8.5 and the Poor solvers’ mean score
remained at 5.75. This suggests that additional knowledge was acquired by
the Good solvers from studying the examples and working the problems.

2. The text did not contain all the information needed by the subjects to
explain the examples or solve the problems. As explained earlier, a target
knowledge base of 62 rules was developed and two judges determined which
of the rules were covered in the text. Of the 62 rules, only 29 (47%) were
judged to be present in the text before studying the examples. Thus, 33 rules
representing more than half the knowledge required for explaining the
examples and solving the problems were not presented in the text and
presumably were not known by the subjects before they explained the
examples and solved the problems.

3. Students took the same test on Newton’s laws after studying the
examples and solving the problems. Chi and VanLehn (1991; Table 6)
showed that the aspects of Newton’s law that were learned were the ones
emphasized in the examples. This result is difficult to explain if students
were merely recalling aspects of Newton’s law learned during text processing
but is quite consistent with acquiring knowledge of Newton’s laws via
example studying.

4. When Chi and VanLehn (1991) classified each of the 173 propositions
found in the students’ self-explanations as coming from text or from
nontext sources, they found that at most 31.5% could be deduced from
information presented in the text. This result is hard to explain given the
knowledge compilation hypothesis, which predicts that propositions would
be deduced from prior knowledge, of which the most important component
is information presented in the text.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

32 VaNLEHN, JONES, CHI

These results suggest that the major prerequisite of knowledge compilation
was not met, because the students did not seem to have complete knowledge
before the example studying and problem solving began. Thus, some kind
of knowledge acquisition must have been going on during the explanation
of examples and the solving of problems.

The text presented universal laws of mechanics, such as F = ma. Solving
problems required more than these laws, however. It required many specific
rules (or “constituent knowledge pieces,” as they are called by Chi and
VanLehn, 1991), such as

When a string pulls on an object, there is a force on the object. The force is
parallel to the string at the point of contact and directed away from the object.
The magnitude of the force is equal to the tension in the string.

The text discussed only a few of these rules and only in a cursory manner.
The others must have been acquired somehow from the examples and
exercises. One might view this as a rare defect, an omission in this edition
of the textbook that will surely be corrected in the next edition. However,
this textbook was already in its third edition. Other science and engineering
textbooks follow the same conventions for what to explain in the text and
what to leave unsaid. Mathematics textbooks are even less complete. They
often make no attempt to present informal rules necessary for solving word
problems. We believe that knowledge acquisition during example studying
and problem solving is endemic in formal schooling, and not at all
idiosyncratic to this particular experimental study.

Because the examples contained more information than the problems, a
plausible hypothesis is that all knowledge acquisition occurred during the
explanation of examples. However, using the 33 rules that did not occur in
the text, we estimate that only 11 of the rules were used during the
examples. The other 22 were first used during the problems because they
dealt with situations and objects (e.g., springs) that did not appear in the
examples. This suggests that two thirds of the rules were acquired during
problem solving. Thus, it appears that some kind of knowledge-level
learning is going on during both example explaining and problem solving.
This is the hypothesis on which Cascade is based.

Derivation Completion

A prototypical knowledge acquisition task is concept formation, wherein
the learner is presented with examples and is expected to generate a concept
that describes them. For instance, a learner might be presented with
examples of a certain species of flower and be asked to form an operative
definition of the species (e.g., has four blue petals, a 5 mm stamen, etc.). In
concept formation, the piece of knowledge to be learned is about the same

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 33

size as the elaborated example. However, in learning physics, the knowledge
to be learned while studying an example is much smaller than the example’s
derivation. (We use derivation to stand for all the reasoning required to
produce a correct answer to an example or a problem. We use example lines
to stand for that part of the derivation that is printed as the example’s
solution.) A derivation might involve hundreds of rules, most of which are
quite familiar to the learner because they were used in earlier derivations. A
derivation may require only one or two new, unfamiliar rules.

Even though the knowledge to be learned is much smaller than the
example’s derivation, the learner could in principle use a concept formation
approach and generate a description that covers the whole example. For
instance, a physics student might say, “Not all of that solution makes sense,
so I’ll just remember that whenever the problem has two blocks attached to
a rope that goes over a pulley, the solution is to write down those equations
and solve them.” Although we never saw such a statement in the protocols,
this approach to learning appears computationally viable.

The Good solvers rarely take such an approach. Instead they rederived
each line of the solution from the preceding lines. When they encountered
a line that they could not derive, they tried to find the gap in their
knowledge that was causing them trouble. For instance, one subject, P1,
could not explain the line “Fax = —Fa cos 30°.” Although she knew Fax
was the projection of force Fa onto the x-axis and that the cos 30° was due
to projecting a 150° vector onto the x-axis, she could not explain the
negative sign. She wondered, “How did they get that negative in there?”
After much work, she eventually concluded, “The reason the negative is
there is because the x-component [of force Fa] is in the negative direction on
the x-axis.” This bit of explanation allowed her to finish explaining the line
and eventually the whole example. Subject P1 was typical of the other Good
solvers. They tried to localize the defect in their knowledge and then
invented as small a piece of knowledge as necessary for overcoming the
defect and completing the explanation.

Earlier work has also shown this approach to be computationally viable,
and it has been independently invented many times (Ali, 1989; Anderson,
1977, 1990; Bergadano, Giordana, & Ponsero, 1989; Berwick, 1985;
Danyluk, 1989; Fawcett, 1989; Genesereth, 1983; Hall, 1988; Lewis, 1988;
Martin & Redmond, 1988; Pazzani, 1990; Pazzani, Dyer, & Flowers, 1986;
Schank, 1986; Sleeman, Hirsh, Ellery, & Kim, 1990; Smith, 1982;
VanLehn, 1987; VanLehn, Ball, & Kowalski, 1990; Widmar, 1989; Wilkins,
1988). The approach has no standard name, so we suggest derivation
completion, because the essential similarity is that the learner guesses a new
piece of knowledge that allows a derivation to be completed.> We hypoth-

3VanLehn (1987) used “learning by completing explanations” and Hall (1988) used “learning
by failing to explain” for roughly the same class of learning systems. However, Cascade can

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

34 VaNLEHN, JONES, CHI

esize that derivation completion is the major approach used by our physics
students for acquiring new knowledge and thus have built Cascade to
embody it.

There are two major steps in derivation completion. First the learner
must locate a gap in a derivation that warrants filling, and then the learner
must find a new piece of knowledge that will bridge the gap. These two steps
are discussed in turn.

Locating a Knowledge Gap

Localizing a gap in one’s knowledge is difficult. The first sign of missing
knowledge is an impasse: A goal cannot be achieved with any rule in the
knowledge base. For instance, subject P1 could not achieve the goal “Show
that the sign of the projection formula is negative.” The existence of an
impasse always indicates that some knowledge is missing, namely, the rules
needed for achieving the goal. However, it is not immediately clear whether
this defect is worth fixing. It could be that one has wandered off the
solution path or made an unintentional error (a slip), which would make
this impasse occur even if one had complete knowledge of the domain. In
this case, the right response to the impasse is to back up and try again. P1
entertained this possibility explicitly. Just after she reached the minus sign
impasse, she went back and checked her earlier work. Only when she had
assured herself that there were no slips and no other ways to explain the line
did she proceed with hunting for a new rule. In principle, there is no way to
know whether a given goal is part of the derivation of a correct answer until
one has actually generated the whole derivation. Thus, one can never tell in
principle whether an impasse is worth inventing a rule for until one has tried
it and obtained a derivation. All learners, computational as well as human,
must use heuristics for guessing whether to back up at an impasse or invent
a new rule.

We hypothesize that all subjects used the same heuristic as P1, and
therefore we built Cascade to use this heuristic exclusively. Whenever

learn from problem solving as well as from example explaining, so the broader term
“derivation completion” is more appropriate. The terms “impasse-driven learning” (VanLehn,
1986) and “failure-driven learning” (Schank, 1982) have similar extensions but exclude systems
such as Sierra (VanLehn, 1987), which collect several incomplete derivations and compare
them before deciding how to complete them. Although some derivation completion systems
use plausible reasoning to fill in the gaps in an explanation, the term is meant to exclude
systems, such as Cohen’s (1990), DeJong and Oblinger’s (in press), and Eskey and Zweben’s
(1990), that build an explanation with plausible reasoning then convert the whole explanation
into new domain knowledge. These systems would be derivation completion systems if they
located the weakest links in their chain of plausible reasoning and built small pieces of
knowledge that are relevant to just those gaps; however, this is not what they do.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 35

Cascade encounters an impasse, it backs up and explores all alternatives for
generating a solution. (Currently, Cascade does not make slips, so it does
not check for them.) Only when it fails to find an alternative route to a
solution does it return to processing the impasse. Notice that Cascade
returns to the original impasse. In trying to find alternative routes, Cascade
may encounter other impasses. If one of these alternative routes is a correct
solution path, then its impasse should be the one to resolve. But Cascade
has no way to know with certainty which of all the routes it explored is most
likely to be a correct solution path. It guesses that the first route it explored
is most likely to be correct, so the first impasse it encountered is the best one
to resolve.

Computational experiments show that this heuristic works well during
example explaining, but works well during problem solving only if search
control heuristics ensure that the first path explored is likely to be a solution
path. When Cascade is explaining an example, the lines of the printed
solution tend to keep it on a correct solution path even without the help of
search control heuristics. When Cascade is solving a problem, there are no
solution lines, so, without search control, it tends to wander off the solution
path rather quickly. The first impasse reached is usually caused by being on
a wrong path. Nonetheless, Cascade resolutely applies its heuristic, finds
that all other paths are blocked, and sets about fixing the impasse by
inventing a new rule. At best, this is a waste of effort. At worst, the newly
acquired rule is not a correct rule of physics even though it caused the
derivation to go through. Subjects do not run amok like this, so some kind
of search control is needed to keep Cascade on the solution path. Such
search control is needed only for solving problems because the example lines
provide equivalent constraint during example explanation.

We hypothesize that the missing search control during problem solving is
provided by analogies with examples’ solutions. The protocols provide
ample evidence of the use of analogy. Subjects often turned to the page with
the example on it or mentioned the example as they worked. All 8 subjects
used analogy some of the time (Chi et al., 1989). Example-exercise
analogies are heavily used by subjects in other task domains as well
(Anderson et al., 1984; Pirolli & Anderson, 1985). Most models of
analogical problem solving divide the process into three phases: retrieving
an example, forming a mapping between the example and the problem, and
applying information from the example to the problem. These phases will
be discussed in turn.

Retrieving an example seems to be governed by visual processing. All the
examples in the study had a diagram, such as the one shown in Figure 1. All
but five of problems had a diagram as well. Subjects seemed to use these
diagrams to help them locate an appropriate example for the problem they
were working on. For instance, one subject said, “This looks very much like

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

36 VanLEHN, JONES, CHI

the one I had in the examples. Okay. Should I just go right to the problem
[example], which I distinctly remember? I mean, even the angle is the same
here. Or should I try to do it without looking at the example?” The subject
said this before reading the text of the problem, so apparently her retrieval
of the example was based solely on the diagrams. Even when a subject’s
memory for the diagrams failed, it was not difficult to find an appropriate
example because there were only three examples to search through and they
had very distinct diagrams. In all of the protocols, there was only one case
where a subject tried and failed to find an appropriate example. Thus, it is
not the case that Good solvers were better at analogical retrieval than were
Poor solvers, because they were all at ceiling. Cascade does not model the
processes involved in retrieval because they seem somewhat specific to this
study and the resulting retrievals were not a source of differences between
Good and Poor solvers. Cascade was simply given a function, analogical
__retrieval, which takes the name of a problem as input and delivers one or
more example names as output.

Forming a mapping between an example and a problem means deciding
which objects in the example correspond to which objects in the problem.
We noticed that the subjects’ first look at an example was more extended
than other references to the example during the same problem. We believe
that during the first reference, the subject built an analogical mapping as
well as checked to see if the example was analogous enough with the
problem to warrant using it. The mapping was used during this initial
reference to the example and all subsequent ones during the solution of the
current problem. Because the problems were often quite similar to the
examples, the subjects always found the same, correct mapping. The lack of
individual variation made it difficult to infer the heuristics used by subjects
to select mappings. Cascade uses a set of heuristics based on the types of the
objects (e.g., physical objects can only be paired with other physical
objects, quantities with quantities, etc.). These yield the mappings that
subjects chose, but there is no way to tell from these data whether these
heuristics are the ones actually used by the subjects.

The retrieval and mapping processes could be used to import many kinds
of information from the example to the problem. In this case, the subjects
needed search control information: Which rule should be used to achieve
the current goal? We hypothesize that they used the mapping to convert the
goal from the problem into an equivalent goal for the example and then
searched the example’s derivation for that goal. They might have said, for
instance, “My goal is to find the tension of String A, and String 1 in the
example is analogous to String A, so I’ll look for the tension of String 1 in
the example.” The search for an equivalent goal required recall or recon-
struction of the example’s derivation because the example’s printed solution
did not contain goals, although perusal of the printed lines may have

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 37

stimulated the recall of the derivation. Having found an equivalent goal,
subjects next needed to recall which rule they had used to achieve it. If they
succeeded in this, then they were nearly done, because no further analogical
mapping was required. The rule was presumably a generic structure whose
variables could simply be instantiated in order to apply it to the current goal
of the problem.

This whole process amounted to a search control heuristic: To achieve a
goal, it is wise to use a rule that achieved an equivalent goal in an example
that is analogous to this problem. We call this heuristic mechanism
analogical search control (cf. Jones, 1989).

Methods for Filling Gaps in Derivations

After learners had located a gap in their knowledge, the next step in
derivation completion was to find a piece of knowledge that would bridge
the gap. Our hypotheses are that finding an appropriate piece of knowledge
became a goal in itself, that subjects had multiple methods for achieving
such goals, and that if a method succeeded in acquiring an appropriate piece
of knowledge, the knowledge was stored in memory. P1 provides a clear
illustration of this process. After she detected that she could not explain the
minus sign in “Fax = —Fa cos 30°,” she still had to figure out how to bridge
that gap by recalling or constructing knowledge that would produce the
minus sign in this particular case. First she consulted a table of trigono-
metric identities, because, as she put it, “I remember them doing strange
things with the trig functions being negative and positive for no apparent
reason.” When this approach failed, she next looked up cos 30 in a table,
hoping that it would come out to be a negative number. When this failed,
she began her third approach. The protocol reads:

P1l: Hmmm, negative cosine 30, why would they say, ahhh, ummm. . . .
The, ohh, okay maybe it’s just because the A component is the X component
of force A is negative. So they just. . . . Well, okay, I'll, I'll try that for a
while. Let’s see if that works, ’cause that makes sense.

E: What makes sense?

P1: The reason the negative is there is because the X component is in the
negative direction on the x-axis.

P1 did produce the correct rule, but it is not clear how she did it.
Although she could have recalled it from her mathematics courses, we
believe she was constructing it. She probably noticed that the vector lay
above the negative part of the x-axis and then applied an overly general rule
for mathematical calculations, which could be called conservation of

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

38 VaNLEHN, JONES, CHI

negativity. When a negative quantity is transformed, the resulting quantity
is often negative even though the negativity might be expressed somewhat
differently than it was in the original quantity. In this case, the negativity of
the x-location of the vector was preserved as it was projected and became a
formula. The negativity changed from a locative encoding to an explicit
negative sign. The point is that P1 bridged the gap by adopting an explicit
goal of finding knowledge that would complete the derivation. She tried
three methods, and the last one succeeded. This allowed her to complete the
derivation. Evidence is presented later showing that she actually learned a
new rule from the experience.

The hypothesis is that subjects seek knowledge when they detect that they
are missing some and that they use multiple methods to achieve their
knowledge acquisition goals. This hypothesis is hardly novel —virtually all
the derivation completion learning models use it. The models differ
primarily in the knowledge acquisition methods they use. For the sake of
exposition, methods found in the literature are grouped into several broad
categories and discussed next.

Acquiring knowledge by reading. One way to acquire knowledge is
to seek it in the textual part of the instructional materials. For instance, one
subject could not explain the units in an example’s equation because she did
not know the American unit of mass. She looked it up in the text and
presumably stored a rule in memory stating that slugs are the American unit
of mass. This method of filling gaps in one’s knowledge is the main method
of knowledge acquisition in early versions of ACT* (Anderson, 1983).

To find out how much our subjects used this method, we counted all
references to the text or the examples made by the subjects. Of 433
references, 129 (30%) were to the chapter’s text. Few of these 129 references
were as focused and successful as the aforementioned slugs episode. Most
frequently, students hunted through the textbook for an equation con-
taining the currently sought quantity. Any equation containing a quantity
of that type will do. It could occur in the middle of an apparently irrelevant
example or even in a different chapter of the textbook. Most of the subjects
seemed to know that this method for bridging gaps was not likely to yield
correct knowledge. They often made comments such as, “I hate doing this.”
We doubt that they believed the rules (if any) acquired from this activity
were correct rules of physics. Because searching the textbook for equations
occurred rather frequently in the protocols, Cascade has a model of it,
called transformational analogy. Transformational analogy does not pro-
duce new rules when it occurs.

Acquiring knowledge by syntactic induction. A common technique
for concept formation is to compare multiple instances of the concept and

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 39

conjecture that their common features are the defining properties of the
concept. Using this and related techniques, students construct concepts by
making syntactic comparisons of the instances; thus this method is often
called syntactic induction or similarity-based learning. Syntactic induction
can be used for constructing knowledge to fill gaps. The basic idea is to
collect several instances of the same gap and compare them. For instance,
P1 could have found several cases in which a minus sign appeared in a
projection formula, compared them, and discovered that they possessed a
common feature: The vector being projected was over the negative part of
the axis onto which it was being projected.

Syntactic induction techniques for filling gaps have been used by many
derivation completion programs (Ali, 1989; Danyluk, 1989; Fawcett, 1989;
Hall, 1988; VanLehn, 1987; Wilkins, 1988). Often the basic mechanisms of
syntactic comparison are supplemented by syntactic heuristics, such as
preferring the smallest rule that will fill the gap. In some derivation
completion programs, syntactic heuristics alone induce a rule from a single
instance of the gap (Anderson, 1977; Berwick, 1985; Genesereth, 1982;
Martin & Redmond, 1988; Sleeman et al., 1990; Smith, 1982).

A version of syntactic induction was implemented in an early version of
Cascade, but it did not perform well. At an impasse, the inducer sees if
there is a new rule whose conclusion matches the current goal but whose
antecedent is false in the current situation. If it finds such a rule, it drops the
mismatching parts of its antecedent, thus generalizing it. This allows the
inducer to achieve the current goal and thus resolve the impasse. If no such
rule is found, a new rule is created by making its conclusion be the current
goal and its antecedent be the current situation, with variables substituted
for problem-specific constants (objects and numbers).

We had not even fully implemented this method of knowledge acquisition
before it became clear that it would have severe problems. First, most of the
new rules are learned during problem solving, but this technique can invent
a new rule only during example explaining. Second, the rules it invents are
limited in the kind of conclusions they can draw. For instance, if the goal
is to find the tension of string__A and the example shows that string__A has
a tension of 5, then the new rule’s conclusion will have the form tension(X)
= Y, because variables X and Y have been substituted for the object and
number. However if 5 does not appear anywhere in the given situation
because it is the result of some arithmetic calculation, then the variable Y
will not appear in the rule’s antecedent. Thus, the rule draws a nearly useless
conclusion: The tension of an object is something, but I do not know what.
Although there are ways to syntactically induce arithmetic formulas (e.g.,
VanLehn, 1987), they require many more examples than the one or two
available for formulating the new rules in this instructional situation.

The conclusion is that there do not appear to be enough examples of new

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

40 VANLEHN, JONES, CHI

rule applications for syntactic induction methods to work in this instruc-
tional situation.

Acquiring knowledge by goal-product analogies. Another knowl-
edge acquisition method is based on drawing analogies between problems
and worked examples. Anderson’s (1990; Anderson & Thompson, 1989)
latest model of skill acquisition is typical of this technique. Anderson’s
model assumes that derivations of examples are available in memory and, in
particular, that every goal in the derivation is paired with the external
product generated by achieving it. Because most of Anderson’s examples
involve LISP programming, the external products of most goals are small
pieces of LISP code. During problem solving, if the learner cannot find a
rule to achieve a goal, it seeks a similar goal in the derivation of an example.
If a goal is found, the learner converts the old goal’s product into the terms
of the current problem, thus creating a product for the current problem’s
goal. Proceduralization then creates a rule that summarizes the results of
this analogical knowledge acquisition process. Similar knowledge acquisi-
tion methods have been used in other models (e.g., Lewis, 1988; Pazzani,
1990; Pazzani et al., 1986). They all map a goal-product pair from an
example to a current problem. They ignore the derivation of the product
from the goal. The difference between this technique and Cascade’s
analogical search control is that this technique imports the external product
generated by processing a goal, whereas analogical search control imports
the name of the rule used to achieve a goal.

A version of goal-product analogy was implemented in Cascade but
proved to have limited utility. As with syntactic induction, this technique
fails when the to-be-learned rule first appears during problem solving.
Because there is no earlier application of it during example studying, there
is no early goal-product pair to which to refer. Even when the technique
finds an appropriate goal-product pair, it often fails anyway. In physics,
the most common goal is to seek the value of a quantity. The external
product of such a goal is usually a number or a vector, and such atomic
entities do not usually map successfully. For instance, suppose the prob-
lem’s goal is to find a tension for String A, and the example’s derivation says
that String 1’s tension is 5 Newtons. An analogical map can pair the two
strings, the two goals, and the units (Newtons), but what should it pair with
the 5?7 The 5 was calculated by simplifying an arithmetic expression,
weight(blockl) / [sin(3) — cos(30)/sin(45)], where weight(blockl) = 10
Newtons appears in the example’s givens. This expression can be mapped
from the example to the problem by substituting the problem’s block for
blockl and the problem’s angles for 30 and 45. However, after the
expression is simplified to 5, there is nothing left to map. Simplification
destroys information that is needed for analogical mapping. We conjecture

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 41

that goal-product analogy works adequately only when the external product
of a goal is nearly isomorphic with the derivation used to produce it (cf.
Carbonell, 1986). That is why it works so well for LISP but not for physics.

Explanation-based learning of correctness. Another knowledge
acquisition technique, which we call explanation-based learning of correct-
ness (VanLehn, Ball, & Kowalski, 1990), fills a gap by applying an overly
general rule, which is not normally used during reasoning. If this applica-
tion leads ultimately to a successful derivation, then a specialization of the
rule is created and inserted into the set of rules that is normally used during
reasoning. The analysis of P1 presented at the beginning of this section is an
illustration of explanation-based learning of correctness, where “conserva-
tion of negativity” is the overly general rule. The same basic idea appears in
many forms in the literature. Schank’s (1986) explanation patterns are a
kind of overly general rule used to bridge gaps in explanations of human
interest stories. Causal attribution heuristics are used by many theorists to
explain how subjects bridge gaps in explanations of the physical world
(Anderson, 1990; Lewis, 1988; Pazzani, 1990). Several authors use deter-
minations (Davies & Russell, 1987) as constraints on learning (Bergadano et
al., 1989; Widmar, 1989). Goodman (1956) uses over hypotheses to explain
scientific induction.

Any version of this method for filling gaps requires distinguishing
between knowledge that is normally used and knowledge that is reserved for
bridging gaps. Explanation patterns and causal attribution heuristics are
expressed in a different format from the knowledge used normally in
making explanations. Explanation-based learning of correctness uses the
same representation for both types of knowledge but keeps them distinct by
marking the rules that are normally used for solving problems in the task
domain with the name of the domain (e.g., “physics”). This will make it
easier to augment Cascade with a module that acquires overly general rules
by syntactic generalization of normal rules (Ram, 1990; VanLehn & Jones,
in press).

The hypothesis that domain rules are marked seems necessary to account
for some common aspects of classroom problem solving. If students acquire
an incorrect rule and then later learn that it is incorrect, they probably do
not forget the rule even though they stop using it. Thus, there must be some
way of indicating which rules should not be used even though they are
potentially applicable. This could be represented by removing that task
domain’s mark from the rule. Similarly, subjects rarely use rules from other
task domains even when they are potentially applicable. For instance, while
explaining an example in which a block was sliding on a surface, one subject
apparently knew from common sense that the block will not jump up or
sink into the surface, but she could not prove it with her current physics

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

42 VaNLEHN, JONES, CHI

knowledge. After trying several approaches, she gave up and commented,
“The only way you could have known that there’s no acceleration in the
y-direction is not from equations but from just knowing something about
the situation.” We believe that subjects prevent themselves from considering
such knowledge by marking only some of the knowledge they have about
blocks, surfaces, etc. as formal physics knowledge. We suspect that this
system of marking is used only for task domains taught in school. It may be
something that students learn to do early in school because the resulting
reduction in search makes their problem solving more efficient and more
often correct. Nonschool problems can be solved with knowledge of any
kind.

As shown earlier, explanation-based learning of correctness works quite
well. In particular, it is able to fill gaps that occur during problem solving,
which is something that syntactic induction and goal-product analogy
cannot do. However, it is unable to handle one learning event, wherein a
knot is declared to be the body, so analogy abduction was added. Analogy
abduction is similar to goal-product analogy.

Summary. The following list indicates which of the aforementioned
learning methods are modeled in Cascade:

1. Reading: Searching the textbook for equations is modeled, but
produces no new rules.

2. Syntactic induction: Was modeled, but currently turned off.

Goal-product analogies: Is modeled, but is rarely used.

4. Explanation-based learning of correctness: Is modeled and is fre-
quently used.

w

There are other methods for bridging gaps in derivations, such as scientific
discovery (VanLehn, 1991a), that do not appear in this list because we saw
no signs of them in the protocols.

Goal Specificity of New Knowledge Pieces

Most of the goals in physics reasoning are to find a value for a quantity, and
most of the inferences involve equations. Thus, a typical goal might be to
find the tension in a certain string, and an equation to achieve that goal is
tension(S) = magnitude(force(B,S)), which says that the tension in string S
is equal to the magnitude of a tension force acting on body B due to string
S. Suppose that a student acquires this rule at an impasse where he or she
is trying to achieve the tension goal. Would this piece of knowledge be
invertible, so that the student can use it to achieve a goal of finding the

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 43

magnitude of a tension force? Although the protocols are silent on this
point, we believe that students are able to invert new pieces of knowledge.
That is, we believe that when subjects have learned an equation, they can
use it to find any of the quantities that the equation mentions. For instance,
if they learn F = ma in a context in which net force is sought, they can
nonetheless apply it in a context in which mass is sought. Although this
particular claim is untested, there are some related transfer findings that
provide indirect support.

Singley and Anderson (1989) reviewed experiments from Anderson’s
group that suggest that there are two kinds of transfer, procedural transfer
and declarative transfer. Procedural transfer is use specific but develops
only after practice. That is, when a person uses a piece of knowledge in one
context several times and thus gets faster and more accurate at using it, this
practice does not make it easier for them to use it in a new context. In terms
of Cascade’s task domain, suppose one group of subjects is taught that w =
mg with examples and exercises in which weight is always the sought
quantity. Another group of subjects is taught that w = mg with examples
and exercises in which mass is the sought quantity. They are given an hour
of practice, during which time their performance (speed and accuracy)
increases. After the practice period, the group’s tasks are switched and their
performance is measured. Singley and Anderson would predict that the
group who practiced seeking weights would do as poorly on seeking masses
as the mass-seeking group did at the beginning of their practice period.
Similarly, the mass-seeking group would look like weight-seeking novices.
Thus, substantial practice causes procedural transfer, which is specific to
the particular goals for which a piece of knowledge (w = mg, in this case)
is put.

Declarative transfer is not use specific and does not require practice to
develop. As an illustration of declarative transfer, suppose the practice
periods of the preceding two groups is reduced to about a minute or two, so
that each group uses w = mg only once or twice before being switched to
the transfer task. Singley and Anderson (1989) would predict that both
groups would perform about the same on their transfer task as their
opposites did during training and, moreover, that both would do better on
their transfer tasks than a control group who received no practice at all on
w = mg before being tested. This illustrates declarative transfer: Knowl-
edge of the equation w = mg, regardless of whether it is learned in the
weight-seeking condition or the mass-seeking condition, is necessary and
sufficient for the initial few uses of the equation for any purpose.

Cascade’s derivation completion methods are knowledge acquisition
methods, rather than knowledge compilation mechanisms. Thus, Singley
and Anderson’s (1989) results suggest that the knowledge constructed by
these methods can be declaratively transferred. This suggests that they be

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

44 VanLEHN, JONES, CHI

represented as equations, because equations are not specific to the goal that
was present at the time the knowledge was acquired. Therefore, instead of
representing w = mg as three production rules

If body(B), problem(P), mass(B) = M and grav__constant(P) = G,
then weight(B) = M*G.

If body(B), problem(P), mass(B) = M and weight(B) = W, then
grav__constant(P) = W/M.

If body(B), problem(P), grav__constant(P) = G and weight(B) = W,
then mass(B) = W/G

Cascade should use one equation:
weight(B) = mass(B)*grav__constant(P).

However, this drops the condition that B be a body and P be the current
problem, making it necessary to add applicability conditions. Thus, w =
mg should be expressed as

If body(B) and problem(P), then weight(B) = mass(B)*grav__
constant(P).

Cascade’s interpreter must be more complex than a typical rule interpreter
in order to use knowledge expressed in this form, because it must use
algebraic transformations. As an illustration, suppose that Cascade is given
the goal of finding mass(block4). To apply the preceding conditioned
equation, it first shows that body(block4) and problem(prob3) hold, then it
sets the subgoals of finding the other quantities in the equation,
weight(block4) and grav__constant(prob3). Achieving these subgoals means
that the values of the two quantities become known. Suppose the weight is
98 and the gravitational constant is 9.8. The interpreter must combine the
values for the subgoal quantities to form a value for the goal quantity.
Substituting the subgoals’ values into the equation yields 98 =
mass(block4)*9.8. Solving the equation yields mass(block4) = 98 / 9.8 =
10. Cascade has found a value for the sought quantity, thus achieving the
goal. Notice that it was necessary to use algebraic transformations to solve
the equation. This is inevitable when the knowledge is expressed in a
format, such as conditioned equations, that allows the same piece of
knowledge to be used for achieving multiple goals. When the knowledge is
expressed as multiple single-goal rules, such as the three production rules
mentioned earlier, then algebraic knowledge is not needed during interpre-

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 45

tation. For instance, in ACT*, conditioned equations would be represented
as structures in declarative memory, and production rules would implement
an interpreter for them. The production rules would embed the algebraic
knowledge necessary for using the conditioned equations.

In short, in order to obtain the type of declarative transfer that we believe
is common in this task domain, it is useful to represent knowledge as
conditioned equations and to embed algebraic knowledge in the interpreter.
Because procedural transfer develops only with practice, modeling it would
require a model of memory, which will be added to later versions of
Cascade (see Step 1d in Table 3).

Local Explanation

Cascade explains each line of an example individually, but it does not try to
find a plan or schema that spans all the lines. That is, Cascade does local
but not global explanation (plan recognition). This design is motivated by
examination of the protocols. Of the 204 self-explanation statements
analyzed by Chi and VanLehn (1991; Table 4), only 13 (6%) related goals
to groups of actions. Plan recognition appears not to be a common process
in this instructional situation.

Good Versus Poor Explanation of Examples

The simulation rules are based on the hypothesis that the only difference
between Good and Poor solvers is that the Good solvers explain more
example lines than do the Poor solvers. This assumption is consistent with
several observations that show that the contents of Good and Poor solvers’
self-explanations are not significantly different (see Tables 4 and 7 in Chi &
VanLehn, 1991). The Good solvers just produced more self-explanations
than the Poor solvers did.

Summary

The preceding argument may be summarized as follows. First, students
invented new knowledge during example studying and problem solving,
rather than recalling and operationalizing knowledge acquired by reading
the text. Moreover, much of this knowledge was acquired during problem
solving, and not just during example explaining.

Next, when a derivation used previously unpresented knowledge, only a
few small pieces of knowledge were new. Although students could have
simply stored a whole derivation whenever they detected that it involved
some new knowledge, they instead tried to find the gap in their own

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

46 VaNLEHN, JONES, CHI

derivation and infer a piece of knowledge that filled it. This technique is
called derivation completion.

Detecting a gap was difficult because some impasses were caused by poor
search control decisions or slips. We believe that subjects usually checked
their partial derivation for slips and to determine if an alternative solution
path existed. Only when they were satisfied that the impasse was inevitable
given their current knowledge did they proceed to search for knowledge to
fill it. Computational experiments showed that this was insufficient in itself
to account for subject’s’ behavior during problem solving, so we conjec-
tured that subjects used the derivations produced while explaining examples
to constrain their generation of derivations while problem solving. This
technique is called analogical search control.

Subjects had multiple methods for finding new knowledge. The most
productive one for our subjects seems to have been EBLC, wherein new
domain knowledge was created by specialization of overly general knowl-
edge.

Subjects can probably perform a type of declarative transfer, to use
Singley and Anderson’s (1989) term, wherein an equation acquired while
seeking one quantity can be used later when another quantity in the
equation is sought. This suggests that knowledge be represented as condi-
tioned equations and that algebraic equation-solving knowledge be built
into their interpreter.

When students explained an example’s solution, they rederived each line
but did not try to find an overall plan that spanned all the lines. This same
process was used by both Good and Poor solvers. The Good solvers merely
chose to explain more example lines than did the Poor solvers.

DISCUSSION
What Was Discovered While Developing Cascade

We had originally thought that EBLC and analogical search control were
completely independent. However, in trying to simulate the Good solvers,
we discovered that (a) most of the rules that need to be learned were first
used during problem solving, and (b) Cascade tended to learn at the wrong
impasses when analogical search control was turned off during problem
solving. In retrospect, this result is an obvious, inevitable, general principle
of machine learning. If missing knowledge is required to solve a problem or
explain an example, then all paths from the initial state are blocked —they
terminate in an impasse. There is no way in principle for the learner to know
which of these impasses, if resolved, would lead to a solution. However, if
the learner is explaining an example, the example lines often permit only
one partial solution path and thus only one impasse. Because the example’s

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 47

problem is solvable, resolving the impasse will probably lead to a solution.
Thus, the learner can assume that this impasse probably was caused by a
missing piece of knowledge, so inventing a rule that resolves it is likely to
(re)construct a correct domain rule. On the other hand, if the learner is
solving a problem, there are no printed solution lines to guide generation of
a derivation, so there tend to be many partial solution paths that terminate
in impasses. In order to increase the probability that a correct rule will be
learned, the learner needs some way to intelligently select one of these
partial solution paths/impasses. Ample search control knowledge must be
learned before encountering the impasse. We thus arrive at the novel result
that search control learning is required for all kinds of derivation comple-
tion, including EBLC and analogy abduction, that occur during problem
solving. Derivation completion during example studying requires less search
control knowledge, if any. This is consistent with the finding that examples
cause faster learning than equivalent problems (e.g., Pirolli, in press;
Sweller & Cooper, 1985). This line of argument is backed by computational
experiments with Cascade. It learned 15 rules during problem solving when
analogical search control was turned on but only 6 when it was turned off.
Thus, 60% of the rules learned during problem solving required analogical
search control.

Another major surprise was that the increased learning of the Good
solvers was not due to a single learning mechanism, but rather to a variety
of interacting mechanisms. According to the Cascade analysis, the ideal
Good solver learned 23 rules and the ideal Poor solver learned 3. The 20
rules that were learned by the Good solver and not by the Poor solver came
from several sources:

¢ 8 rules were learned as the examples were explained. Because the Poor
solver did not explain the examples, it did not learn these rules.

® 3 rules were learned during problem solving simply because the 8 rules
learned during example studying set up contexts that allowed them to
be learned by EBLC, even without the aid of analogical search control.

¢ 9 rules were learned by EBLC during problem solving using analogical
search control. Because the Poor solver did not generate derivations
for the examples, it could not use analogies to them and thus could not
learn these 9 rules.

We had originally expected that all rules would be learned during example
studying, but this turned out to be the source for only 8 of the 20 rules.
Another major surprise was that self-explanation raised the learning rate
during problem solving. This result is consistent with the conjecture by
Pirolli and Anderson (1985) that the way students study examples causes
some students to learn more while solving problems than other students.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

48 VanLEHN, JONES, CHI

Cascade provides an explicit model of this. As far as we know, this is the
first computational model to show how one kind of training can increase
the learning rate of a different kind of training. Most models predict only
additive interactions, in which the amount learned by the combined training
is the sum of the amounts learned by each training in isolation. This unusual
prediction of a nonlinear interaction warrants further empirical testing.

Because we invented overly general rules whenever Cascade encountered
an impasse that it could not resolve with the existing overly general rules, we
feared that the resulting collection of overly general rules would be terribly
ad hoc with no interesting themes or patterns. Fortunately, the result was
otherwise. The collection of overly general rules fell neatly into two classes.
Rules in the first class (Rules 1-11 in Table 4) relate property values of two
objects whenever those two objects are assigned compatible property values
by the example and the objects themselves have some intrinsic relationship.
As described in VanLehn and Jones (in press), these rules fall into an
interesting hierarchy that could be learned by simple generalization and
strengthening techniques and thus predict a learning-to-learn phenomenon.
The second class of overly general rules (Rules 39-44 in Table 4) implements
the basic idea that it is okay to substitute common sense quantities (e.g.,
pulls and pushes, accelerations, and decelerations) for formal quantities,
but only if one is really stuck and the resulting substitution leads to a
successful derivation. In short, computational modeling taught us that most
rules in this instructional situation could be learned by using two basic
assumptions: Property-value coincidences are sometimes not accidental,
and commonsense quantities can sometimes be treated as formal physics
quantities.

We had a surprisingly hard time finding a way to transfer knowledge
from the knot-is-a-body impasse to later problem-solving situations. We
first attempted to use syntactic induction techniques, but the resulting rules
either were too specific and did not apply where we saw subjects applying
their rules or were too general and applied inappropriately. Eventually we
discovered that a rule could invoke the analogical problem-solving ma-
chinery directly. This rather unusual type of rule gave us the right
combination of selectivity and generality. As far as we know, this analogy
abduction technique is unique in machine learning.

We did not initially realize that memory plays an important role in
explaining the findings on analogical references. The protocols showed that
the Good solvers referred to the examples less than did the Poor solvers,
and yet analogical search control required that they refer often to the
derivations of examples. The only way to resolve this apparent conflict is to
assume that the Good solvers were able to retrieve most of the derivational
information from memory and thus did not need to look at the examples as
often as the Poor solvers did.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 49

Analogical search control solves a nagging problem in the expert-novice
literature. When subjects solved a problem whose diagram appears in
Figure 3A, they drew analogies to two earlier problems whose diagrams are
shown in Figures 3B and 3C. In some schema-based problem-solving
systems, it is difficult to get the solver to use more than one schema to solve
the problem. The solver tends to let one schema dominate the problem
solving and invokes the other schema as a subordinate. This does not reflect
the quality of human problem solving (Holland et al., 1986; VanLehn,
1989). Thus, the problem is supposedly to form a compound schema from
two component schemas of equal stature. When Cascade solves the problem
of Figure 3A, it is told that the diagram is similar to two examples’ diagrams.
It retrieves both examples during analogical search control and refers to
goals from both of them. This produces the mixture of inferences that
seems required for simulating human problem solving. We were surprised
that analogical search control solved the so-called schema compounding
problem. This suggests that a collection of derivational triples plays the role
of a schema.

300

B. C

FIGURE 3 A problem solved by analogy to two other problems.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

50 VanLEHN, JONES, CHI
Other Models of the Self-Explanation Effect

Two other models of the self-explanation effect are under development.
Reimann (in press) is developing a case-based model of the self-explanation
effect. Example studying is modeled as plan recognition. Existing schemas/
plans are used to analyze an example and create an annotated case that
explains how the various parts of the example fit together to form a whole.
During problem solving, such cases are adapted and replayed. Students who
make more self-explanations acquire better annotations, which permit
better adaptation during problem solving. Like Cascade, the Reimann
model is based on the assumption that study habits and not prior knowledge
are the source of the self-explanation effect. The main difference between
the two models is the grain size of their knowledge representations, which
in turn governs how they acquire knowledge during example study and use
it during problem solving. The Reimann model learns example-sized units
of knowledge (cases), whereas Cascade learns smaller units (rules). There
are both computational and empirical reasons for using the smaller grain
size. Computational experiments suggest that transfer is increased by
storing knowledge as parts of cases (snippets) rather than whole cases
(Hinrichs, 1988; Kolodner & Simpson, 1984; Redmond, 1990). The Chi et
al. (1989) protocols suggest that subjects in that study attended more to
individual lines than to the overall plan of an example, and their attention
became especially focused when they detected that they needed to learn new
knowledge. For instance, when P1 could not explain a minus sign, after a
brief review of her work to this point, she concentrated almost exclusively
on finding a rule or rules that would explain the minus sign.

On the other hand, schemas have often been used to explain phenomena
in the expert-novice literature (e.g., Elio & Sharf, 1990). Because Cascade
does not have schemas, it is not immediately clear how it can explain, for
instance, the finding by Chi, Feltovitch, and Glaser (1981) that experts
classify problems according to the solution method while novices classify
problems according to their surface characteristics. However, we believe
this finding can be explained within the Cascade framework if one assumes
that experts have a vast store of derivations that they use to quickly plan a
solution to the given problem. This allows them to determine the main
solution method and to use that as a basis for classification. Novices cannot
determine solutions quickly enough to do this, so they use surface features
for classification. Consistent with this explanation, Chi et al. (1981) found
that experts actually took longer than novices to classify problems (45 sec
vs. 30 sec per problem). Perhaps other phenomena that have been explained
with schemas can also be explained in the Cascade framework.

Pirolli and Recker (1991) are developing a model that can understand text
as well as examples. Following Kintsch (1986), they model understanding as

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 51

a process that may involve many levels of elaboration and abstraction. Poor
students do verbatim processing of the text and examples, leading to
memory traces that are retrieved and used in a rote fashion during problem
solving. Good students make deeper explanations. For instance, a model of
a Good student might explain a sample LISP program by constructing a
mental model of how the program satisfies its specifications, which would
in turn involve constructing mental models of program abstractions,
computations, and functions.

The Pirolli-Recker (1991) model is similar to Cascade in that both are
built on the assumption that the self-explanation effect is caused by the
students’ study habits rather than their prior knowledge. Moreover, both
models use small-grained representations of knowledge rather than cases or
schemas. There are two main differences, however. Although Pirolli and
Recker are grounding their model’s development on data collected from a
study of students learning to code LISP by reading chapters from a
textbook, studying examples, and solving problems, their text, which is
based on a cognitive task analysis of LISP coding, is probably more
complete and easier to understand then the physics text used by Chi et al.
(1989). Because the LISP text clearly states almost all the to-be-learned
rules, the primary knowledge acquisition method in the Pirolli-Recker
model appears to be interpretation of text, whereas most rules in Cascade
are acquired during example studying because they are not mentioned in the
text. In this respect, the models are complementary rather than antagonis-
tic. A second difference between the models is that Cascade currently has no
model of memory, whereas the Pirolli-Recker model has a detailed model
of the encoding, indexing, and retrieval of mental information. It uses
Soar’s data-chunking facility (Newell, 1990) to implement a version of the
ACT* declarative/procedural distinction. Much of the learning during
example studying and problem solving appears to be knowledge compila-
tion wherein knowledge is reformatted and reindexed to make it more
useful. Again, the two projects are complementary rather than antagonistic.

Cascade’s Weaknesses and Plans for Further
Research

The current version of Cascade, Cascade 3, models knowledge acquisition
and not knowledge compilation. Like most theorists, we believe that
knowledge compilation is intimately related to human memory mecha-
nisms. Clearly, Cascade needs to be augmented with a model of human
memory in order to be a more complete model of learning. We are
interested not in neurologically or computationally plausible mechanisms of
memory, but only in creating a model that will yield pedagogically useful
predictions about initial knowledge acquisition, transfer, and practice (a

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

52 VanLEHN, JONES, CHI

“pseudo-student”; VanLehn, 1991b). Therefore, we plan to use a “black
box” mathematical model of memory that delivers an external performance
that is an accurate description of human memory. Table 3 shows where the
black boxes go.

Another area where Cascade is weak is its model of Poor solvers’
explanation of examples. The protocols did not reveal much, because the
subjects just paraphrased the lines, perhaps adding, “Ok, that makes
sense.” When they did explain a line, they said the same kinds of things as
Good solvers (Chi & VanLehn, 1991). Currently, Poor solvers’ processing
of examples is modeled by making the lines available for transformational
analogy but not rederiving the lines. However, this fails to explain why the
subjects thought they understood the lines. We suspect their explanation
was just like the Good solvers’ explanation but they took the example’s
word about the details. For instance, in explaining the line “Fax = —Fa cos
45°,” the subject would use the rule that recognized that this was a
projection equation and produced the four correspondences shown in Table
1. The Good solvers went on to explain each of these four assertions,
whereas the Poor solvers may have just stopped at this point and assumed
that each of the four assertions held. Thus, their explanation did not go as
deep as the Good solvers’ but was otherwise the same. This version of Poor
solver behavior explains why Poor solvers thought they had successfully
explained the example. With this addition to the model, our hypothesis
about the key difference between Good and Poor solvers is twofold: The
Good solvers rederived more lines than Poor solvers did, and their
derivations were more complete.

Cascade’s sharp distinction between domain rules and other rules is an
idealization. When a new rule is acquired, subjects probably do not
immediately believe that the rule is just as valid as rules they have been using
successfully for many problems. In the next version of Cascade, rules will
bear a degree of belief that increases whenever the rule is used in a
successful derivation (cf. Rosenbloom & Aasman, 1990). The initial degree
of belief given to a new rule will be a function of the amount of backing up
that has gone on before the rule’s creation. This should capture the
following intuition: Suppose problem solving has been going smoothly
when one encounters a resolvable impasse. One might say, “I don’t know of
any kind of force here, but if there were one, that would balance the other
two forces and explain why the object is at rest.” In such circumstances, one
might believe one has discovered something about physics and form a new
rule. On the other hand, if one has been floundering about for some time
and feeling utterly lost, one is unlikely to react to impasses in the same way.
Cascade should keep a running count of the number of impasses, especially
ones that could not be resolved and required backing up. As these counts

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 53

get higher, the degree of belief accredited a new rule is reduced. When the
counts pass some threshold, rules are no longer formed. The type of
derivation completion used to induce a new rule should also affect its initial
degree of belief. EBLC should produce higher degrees of belief than
analogy abduction. Transformational analogy, which currently does not
produce rules, should produce rules with even lower degrees of belief. As
discussed in VanLehn and Jones (in press), representing degrees of belief
plays a key role in a syntactic induction method for learning overly general
rules, which may also be added to Cascade. In fact, adopting an explicit
representation of degrees of belief has many implications for the overall
design of Cascade that require thorough exploration.

The next milestone will be to fit Cascade’s behavior to the protocols of
each individual subject. Cascade will be made to explain exactly the
example lines that the subject seems to have explained, as indicated in
the protocol, and to explain them to roughly the same depth. When given
problems to solve, Cascade should reach impasses in the same places
that the subject does. However, the subject will probably display more
impasses than Cascade. Currently, Cascade’s initial knowledge contains
every rule mentioned anywhere in the text before the examples. Because
subjects probably have a less thorough understanding of the text, they will
probably reach more impasses than Cascade. Therefore, Cascade’s initial
domain knowledge will be adjusted to fit the impasses that it cannot
explain as deficiencies in example processing. This computational experi-
ment should help us understand how much of the self-explanation effect is
due to missing prior knowledge and how much is due to shallow
self-explanation.

At places where Cascade did perform EBLC, the subjects in the Chi et
al. (1989) study generated pauses and other signs of intensive processing,
but their comments were too vague to indicate whether they were actually
using overly general rules to resolve their impasses. For instance, in the
protocol from P1 quoted earlier, EBLC seems to have occurred while the
subject was saying, “Hmmm, negative cosine 30, why would they say,
ahhh, ummm. ... The, ohh, okay maybe it’s just because the A
component is the X component of force A is negative. So they just. . . .
Well okay I'll, I'll try that for a while.” This is typical of other places in the
protocols where EBLC was supposedly occurring. Clearly, something is
happening here, but it is far from clear that EBLC is a good
characterization of it. It could, for instance, be syntactic induction of some
kind. The only good argument for EBLC over other proposals for
processes that handle these impasses is that EBLC is computationally
sufficient and our implementations of the others were not. It would be
better to settle the issue empirically. For instance, training materials could

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

54 VanLEHN, JONES, CHI

be designed so that several gaps can be spanned by one overly general rule
and several others can be spanned by a second. EBLC would predict a
specific pattern of rule learning events because the subject either learns all
or none of the rules corresponding to each overly general rule.

We are currently working on modeling learning in two other task
domains: conceptual physics problems (e.g., Which direction does a
pendulum bob fall when you cut its string at the apex of its swing?) and
combinatorics word problems (e.g., If a professor has four graders to grade
eight examination questions, how many different ways can she assign
graders to questions so that each grader grades two examination ques-
tions?). These efforts have already revealed inadequacies in the equation-
based representation used in Cascade 3, but it is not yet clear how serious
they are.

The processes of derivation completion and analogical search control
may be the key to learning in many kinds of situations. For instance,
Palinscar and Brown (1984) showed that reciprocal teaching increases
learning. Results from 19 published studies on small peer groups (Webb,
1989) indicate that giving explanations almost always improves learning,
whereas receiving explanations is seldom correlated with increased learning.
Because reciprocal teaching increases the amount of explanation giving, and
explanation giving is similar to self-explanation, reciprocal teaching may
succeed just because it encourages EBLC and the other processes modeled
by Cascade.

A Final Comment

A good theory of knowledge acquisition methods could improve the design
of instructional situations and the training of teachers, because teachers and
instructional designers need to know how students will react to the
examples, exercises, explanations, and other information to which they are
exposed. Research on knowledge compilation mechanisms is useful too, but
primarily for determining how much and what kinds of practice to assign.
The Cascade project is one of a small but growing number of efforts aimed
at providing descriptive theories of knowledge acquisition (e.g., Badre,
1972; Glidden, 1991; Mayer, 1990; Neves, 1981; Martin & Redmond, 1988;
Ohlsson, in press; Ohlsson & Rees, 1991; Pirolli & Recker, 1991; Reimann,
in press; VanLehn, 1990). Because people use many different knowledge
acquisition methods, we expect these efforts to be complementary rather
than competitive accounts of cognition, and we look forward to some
distant future when they can all be unified to provide an encompassing
model of human knowledge acquisition.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 55
ACKNOWLEDGMENTS

Research for this article was supported by the Cognitive Sciences Division
(N00014-88-K-0086) and the Information Sciences Division (N00014-
86-K-0678) of Office of Naval Research.

We appreciate the help of Rolf Ploetzner, Janet Kolodner, Renee Elio,
and an anonymous reviewer in clarifying the exposition.

REFERENCES

Ali, K. M. (1989). Augmenting domain theory for explanation-based generalizations. In A. M.
Segre (Ed.), Proceedings of the Sixth International Workshop on Machine Learning (pp.
40-42). Los Altos, CA: Kaufman.

Anderson, J. R. (1977). Induction of augmented transition networks. Cognitive Science, I,
125-157.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University
Press.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc.

Anderson, J. R., Farrell, R. G., & Saurers, R. (1984). Learning to program in LISP. Cognitive
Science, 8, 87-129.

Anderson, J. R., & Thompson, R. (1989). Use of analogy in a production system architecture.
In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge,
England: Cambridge University Press.

Badre, N. A. (1972). Computer learning from English text. Berkeley: University of California
at Berkeley, Electronics Research Laboratory.

Bergadano, F., Giordana, A., & Ponsero, S. (1989). Deduction in top-down inductive
learning. In A. M. Segre (Ed.), Proceedings of the Sixth International Workshop on
Machine Learning (pp. 23-25). Los Altos, CA: Kaufman.

Berwick, R. (1985). The acquisition of syntactic knowledge. Cambridge, MA: MIT Press.

Bielaczyc, K., & Recker, M. M. (1991). Learning to learn: The implications of strategy
instruction in computer programming. In L. Birnbaum (Ed.), The International Conference
on the Learning Sciences (pp. 39-44). Charlottesville, VA: Association for the Advance-
ment of Computing in Education.

Bundy, A., Byrd, L., Luger, G., Mellish, C., & Palmer, M. (1979). Solving mechanics
problems using meta-level inference. In B. Buchanan (Ed.), Sixth International Joint
Conference on Artificial Intelligence (pp. 1017-1027). Los Altos, CA: Kaufman.

Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past
experience. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:
An artificial intelligence approach (pp. 137-161). Los Altos, CA: Kaufman.

Carbonell, J. (1986). Derivational analogy: A theory of reconstructive problem solving and
expertise acquisition. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
learning: An Al approach: Vol. 2 (pp. 371-392). Los Altos, CA: Kaufman.

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.

Charney, D., Reder, L., & Kusbit, G. (1990). Goal setting and procedure selection in acquiring
computer skills: A comparison of tutorials, problem-solving, and learner exploration.
Cognitive Science, 7, 323-342.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

56 VANLEHN, JONES, CHI

Chi, M. T. H. (in press). Conceptual change across ontological categories: Implications for
learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science:
Minnesota studies in the philosophy of science. Minneapolis: University of Minnesota
Press.

Chi, M. T. H., VanLehn, K., & Reiner, M. (1988, November). How are impasses resolved
while learning to solve problems. Paper presented at the 29th meeting of the Psychonomics
Society, Chicago.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-
explanations: How students study and use examples in learning to solve problems. Cognitive
Science, 13, 145-182.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Chi, M. T. H., & VanLehn, K. (1991). The content of physics self-explanations. The Journal
of the Learning Sciences, 1, 69-106.

Cohen, W. W. (1990). Learning from textbook knowledge: A case study. In T. Dietterich & W.
Swartout (Eds.), Proceedings, Eighth National Conference on Artificial Intelligence (pp.
743-748). Los Altos, CA: Kaufman.

Danyluk, A. P. (1989). Finding new rules for incomplete theories: Explicit biases for induction
with contextual information. In A. M. Segre (Ed.), Proceedings of the Sixth International
Workshop on Machine Learning (pp. 34-36). Los Altos, CA: Kaufman.

Davies, T. R., & Russell, S. J. (1987). A logical approach to reasoning by analogy. In J.
McDermott (Ed.), Proceedings of the Tenth International Joint Conference on Artificial
Intelligence (pp. 264-270). Los Altos, CA: Kaufman.

De Jong, G., & Oblinger, D. (in press). Steps toward a theory of plausible inference and its use
in continuous domain planning. In S. Minton & P. Langley (Eds.), Machine learning
methods for planning and scheduling. Los Altos, CA: Kaufman.

DiSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.),
Constructivism in the computer age (pp. 49-70). Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc.

Elio, R., & Scharf, P. B. (1990). Modeling novice-to-expert shifts in problem solving strategy
and knowledge organization. Cognitive Science, 14, 579-639.

Eskey, M., & Zweben, M. (1990). Learning search control for constraint-based scheduling. In
T. Dietterich & W. Swartout (Eds.), Proceedings, Eighth National Conference on Artificial
Intelligence (pp. 908-915). Los Altos, CA: Kaufman.

Fawcett, T. E. (1989). Learning from plausible explanations. In A. M. Segre (Ed.),
Proceedings of the Sixth International Workshop on Machine Learning (pp. 37-39). Los
Altos, CA: Kaufman.

Ferguson-Hessler, M. G. M., & de Jong, T. (1990). Studying physics texts: Differences in study
processes between good and poor solvers. Cognition and Instruction, 7, 41-54.

Genesereth, M. R. (1982). The role of plans in intelligent teaching systems. In D. Sleeman &
J. S. Brown (Eds.), Intelligent tutoring systems (pp. 137-155). New York: Academic.

Glidden, P. L. (1991). Towards developing a model of mathematics learning: Modeling
knowledge restructuring in learning school algebra. In R. Lewis & S. Otsuki (Eds.),
Advanced research on computers in education (pp. 271-276). Amsterdam: Elsevier.

Goodman, N. (1956). Fact, fiction, and forecast. Cambridge, MA: Harvard University Press.

Hall, R. J. (1988). Learning by failing to explain: Using partial explanations to learn in
incomplete or intractable domains. Machine Learning, 3, 45-78.

Halliday, D., & Resnick, R. (1981). Fundamentals of physics. New York: Wiley.

Hinrichs, T. R. (1988). Towards an architecture for open world problem solving. In J.
Kolodner (Ed.), Proceedings of a workshop on case-based reasoning (pp. 182-189). Los
Altos, CA: Kaufman.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 57

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes
of inference, learning and discovery. Cambridge, MA: MIT Press.

Jones, R. (1989). A model of retrieval in problem solving. Unpublished doctoral dissertation,
University of California at Irvine.

Kintsch, W. (1986). Learning from text. Cognition and Instruction, 3, 87-108.

Kolodner, J. L., & Simpson, R., Jr. (1984). A case for case-based reasoning. In Proceedings
of the Sixth Annual Conference of the Cognitive Science Society (pp. 239-243). Hillsdale,
NJ: Lawrence Erlbaum Associates, Inc.

Larkin, J. (1981). Enriching formal knowledge: A model for learning to solve textbook physics
problems. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 311-334).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Larkin, J. (1983). The role of problem representation in physics. In D. Gentner & A.
Stevens (Eds.), Mental models (pp. 75-98). Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

LeFevre, J., & Dixon, P. (1986). Do written instructions need examples? Cognition and
Instruction, 3, 1-30.

Lewis, C. (1988). Why and how to learn why: Analysis-based generalization of procedures.
Cognitive Science, 12, 211-256.

Martin, J. D., & Redmond, M. (1988). The use of explanations for completing and correcting
causal models. In V. L. Patel & G. J. Groen (Eds.), Proceedings of the Tenth Annual
Conference of the Cognitive Science Society (pp. 440-446). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Mayer, J. H. (1990). Explanation-based knowledge acquisition of schemas in practical
electronics (TR-90/ONR32). Ann Arbor, MI: University of Michigan, Technical Commu-
nications Program.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generaliza-
tion: A unifying view. Machine Learning, 1, 11-46.

Neves, D. M. (1981). Learning procedures from examples. Unpublished doctoral dissertation,
Carnegie-Mellon University.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Novak, G. S, Jr., & Araya, A. (1980). Research on expert problem solving in physics. In T.
Dietterich & W. Swartout (Eds.), Proceedings, Eighth National Conference on Artificial
Intelligence (pp. 465-470). Los Altos, CA: Kaufman.

Ohlsson, S. (1990). Trace analysis and spatial reasoning: An example of its implications for
testing. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic
monitoring of skill and knowledge acquisition (pp. 251-296). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Ohlsson, S. (in press). Artificial instruction: A method for relating learning theory to
instructional design. In P. H. Winne & M. Jones (Eds.), Foundations and frontiers in
instructional computing systems. New York: Springer-Verlag.

Ohlsson, S., & Rees, E. (1991). An information processing analysis of the function of
conceptual understanding in the learning of arithmetic procedures. Cognition and Instruc-
tion, 8, 103-179.

Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and
monitoring activities. Cognition and Instruction, 1, 117-175.

Pazzani, M. (1990). Creating a memory of causal relationships. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Pazzani, M., Dyer, M., & Flowers, M. (1986). The role of prior causal theories in
generalization. In T. Kehler, S. Rosenschein, R. Filman, & P. Patel-Schneider (Eds.),

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

58 VAaNLEHN, JONES, CHI

Proceedings, Fifth National Conference on Artificial Intelligence (pp. 545-550). Los Altos,
CA: Kaufman.

Pirolli, P. (1991). Effects of examples and their explanations in a lesson on recursion: A
production system analysis. Cognition and Instruction, 8, 207-259.

Pirolli, P., & Anderson, J. R. (1985). The role of learning from examples in the acquisition of
recursive programming skills. Canadian Journal of Psychology, 39, 240-272.

Pirolli, P., & Bielaczyc, K. (1989). Empirical analyses of self-explanation and transfer in
learning to program. In G. M. Olson & E. E. Smith (Eds.), Proceedings of the 11th Annual
Conference of the Cognitive Science Society (pp. 450-457). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Pirolli, P., & Recker, M. (1991). A model of self-explanation strategies of instructional text in
the acquisition of programming skills (Tech. Rep. No. CSM-1). Berkeley: University of
California, School of Education.

Pople, H. E. (1973). On the mechanization of abductive logic. In N. J. Nilsson (Ed.),
Proceedings of the Third International Joint Conference on Artificial Intelligence (pp.
147-152). San Mateo, CA: Kaufman.

Ram, A. (1990). Incremental learning of explanation patterns and their indices. In B. Porter
& R. Mooney (Eds.), Machine learning: Proceedings of the Seventh International Confer-
ence (pp. 313-320). Los Altos, CA: Kaufman.

Redmond, M. (1990). Distributed cases for case-based reasoning: Facilitating use of multiple
cases. In T. Dietterich & W. Swartout (Eds.), Proceedings, Eighth National Conference on
Artificial Intelligence (pp. 304-309). Los Altos, CA: Kaufman.

Reed, S. K., Dempster, A., & Ettinger, M. (1985). Usefulness of analogous solutions for
solving algebra word problems. Journal of Experimental Psychology: Learning, Memory
and Cognition, 11, 106-125.

Reimann, P. (in press). Modeling active, hypothesis-driven learning from examples. In E. De
Corte, M. Linn, H. Mandl, & L. Verschaffel (Eds.), Computer-based learning environ-
ments and problem solving. Berlin: Springer.

Rosenbloom, P. S., & Aasman, J. (1990). Knowledge level and inductive uses of chunking
(EBL). In T. Dietterich & W. Swartout (Eds.), Proceedings, Eighth National Conference on
Artificial Intelligence (pp. 821-827). Los Altos, CA: Kaufman.

Schank, R. (1982). Dynamic memory: A theory of learning in computers and people.
Cambridge, England: Cambridge University Press.

Schank, R. (1986). Explanation patterns: Learning creatively and mechanically. Hillsdale, NJ:
Lawrence Erlbaum Associates, Inc.

Singley, M. K., & Anderson, J. R. (1989). Transfer of cognitive skill. Cambridge, MA:
Harvard University Press.

Sleeman, D., Hirsh, H., Ellery, I., & Kim, I. (1990). Extending domain theories: Two case
studies in student modeling. Machine Learning, 5, 11-38.

Smith, D. E. (1982). Focuser: A strategic interaction paradigm for language acquisition
(LCSR-TR-36). New Brunswick, NJ: Rutgers University, Laboratory for Computer
Science Research.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction, 2, 59-89.

VanLehn, K. (1986). Arithmetic procedures are induced from examples. In J. Hiebert (Ed.),
Conceptual and procedural knowledge: The case of mathematics (pp. 133-180). Hillsdale,
NJ: Lawrence Erlbaum Associates, Inc.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31, 1-40.

VanLehn, K. (1989). Problem solving and cognitive skill acquisition. In M. 1. Posner (Ed.),
Foundations of cognitive science (pp. 527-579). Cambridge, MA: MIT Press.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

A MODEL OF SELF-EXPLANATION 59

VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions. Cambridge, MA:
MIT Press.

VanLehn, K. (1991a). Rule acquisition events in the discovery of problem solving strategies.
Cognitive Science, 15, 1-47.

VanLehn, K. (1991b). Two pseudo-students: Applications of machine learning to formative
evaluation. In R. Lewis & S. Otsuki (Eds.), Advanced research on computers in education
(pp. 17-26). New York: North-Holland.

VanLehn, K., Brown, J. S., & Greeno, J. G. (1984). Competitive argumentation in
computational theories of cognition. In W. Kintsch, J. Miller, & P. Polson (Eds.), Methods
and tactics in cognitive science (pp. 235-262). Hillsdale, NJ: Lawrence Erlbaum Associates,
Inc.

VanLehn, K., Ball, W., & Kowalski, B. (1989). Non-LIFO execution of cognitive procedures.
Cognitive Science, 13, 415-465.

VanLehn, K., Ball, W., & Kowalski, B. (1990). Explanation-based learning of correctness:
Towards a model of the self-explanation effect. In M. Piattelli-Palmarini (Ed.), Proceed-
ings of the 12th Annual Conference of the Cognitive Science Society (pp. 717-724).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

VanLehn, K., & Jones, R. (in press). Integration of analogical search control and explanation
based learning of correctness. In S. Minton & P. Langley (Eds.), Machine learning methods
for planning and scheduling. Los Altos, CA: Kaufman.

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and
Instruction, 7, 1-39.

Webb, N. M. (1989). Peer interaction and learning in small groups. International Journal of
Educational Research, 13, 21-40.

Widmar, G. (1989). A tight integration of deductive and inductive learning. In A. M. Segre
(Ed.), Proceedings of the Sixth International Workshop on Machine Learning (pp. 11-13).
Los Altos, CA: Kaufman.

Wilkins, D. C. (1988). Knowledge base refinement using apprenticeship learning techniques. In
R. G. Smith & T. M. Mitchell (Eds.), Proceedings, the Seventh National Conference on
Artificial Intelligence (pp. 646-651). Los Altos, CA: Kaufman.

This content downloaded from 129.219.247.33 on Wed, 20 Mar 2019 20:55:52 UTC
All use subject to https://about.jstor.org/terms

	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21
	image 22
	image 23
	image 24
	image 25
	image 26
	image 27
	image 28
	image 29
	image 30
	image 31
	image 32
	image 33
	image 34
	image 35
	image 36
	image 37
	image 38
	image 39
	image 40
	image 41
	image 42
	image 43
	image 44
	image 45
	image 46
	image 47
	image 48
	image 49
	image 50
	image 51
	image 52
	image 53
	image 54
	image 55
	image 56
	image 57
	image 58
	image 59

	Issue Table of Contents
	Journal of the Learning Sciences, Vol. 2, No. 1, 1992
	Front Matter
	A Model of the Self-Explanation Effect [pp. 1 - 59]
	Appropriating Scientific Discourse: Findings from Language Minority Classrooms [pp. 61 - 94]
	ASK Systems: An Approach to the Realization of Story-Based Teachers [pp. 95 - 134]
	Back Matter [pp. 135 - 136]

